时间:2021-05-22
废话真的一句也不想多说,直接看代码吧!
# -*- coding: utf-8 -*- import numpy from sklearn import metrics from sklearn.svm import LinearSVC from sklearn.naive_bayes import MultinomialNB from sklearn import linear_model from sklearn.datasets import load_iris from sklearn.cross_validation import train_test_split from sklearn.preprocessing import OneHotEncoder, StandardScaler from sklearn import cross_validation from sklearn import preprocessing import scipy as spfrom sklearn.linear_model import LogisticRegressionfrom sklearn.feature_selection import SelectKBest ,chi2import pandas as pdfrom sklearn.preprocessing import OneHotEncoder#import iris_data '''creativeID,userID,positionID,clickTime,conversionTime,connectionType,telecomsOperator,appPlatform,sitesetID,positionType,age,gender,education,marriageStatus,haveBaby,hometown,residence,appID,appCategory,label''' def test(): df = pd.read_table("/var/lib/mysql-files/data1.csv", sep=",") df1 = df[["connectionType","telecomsOperator","appPlatform","sitesetID", "positionType","age","gender","education","marriageStatus", "haveBaby","hometown","residence","appCategory","label"]] print df1["label"].value_counts() N_data = df1[df1["label"]==0] P_data = df1[df1["label"]==1] N_data = N_data.sample(n=P_data.shape[0], frac=None, replace=False, weights=None, random_state=2, axis=0) #print df1.loc[:,"label"]==0 print P_data.shape print N_data.shape data = pd.concat([N_data,P_data]) print data.shape data = data.sample(frac=1).reset_index(drop=True) print data[["label"]] return补充拓展:pandas实现对dataframe抽样
随机抽样
import pandas as pd#对dataframe随机抽取2000个样本pd.sample(df, n=2000)分层抽样
利用sklean中的函数灵活进行抽样
from sklearn.model_selection import train_test_split#y是在X中的某一个属性列X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.2, stratify=y)以上这篇python使用pandas抽样训练数据中某个类别实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
前言大家在使用Python进行数据分析时,经常要使用到的一个数据结构就是pandas的DataFrame,关于python中pandas.DataFrame的基
bootstrap数据指的是:有放回地从总共N个样本中抽样n个样本。 在统计学中,bootstrap即自助法,是一种从给定训练集中有放回的均匀抽样,也就是说,
摘要:有时候我们只需要数据集中的一部分,并不需要全部的数据。这个时候我们就要对数据集进行随机的抽样。pandas中自带有抽样的方法。应用场景:我有10W行数据,
本文实例讲述了Python数据分析模块pandas用法。分享给大家供大家参考,具体如下:一介绍pandas(PythonDataAnalysisLibrary)
最近在使用tensorflow进行网络训练的时候,需要提取出别人训练好的卷积核的部分层的数据。由于tensorflow中的tensor和python中的list