Python+pandas计算数据相关系数的实例

时间:2021-05-22

本文主要演示pandas中DataFrame对象corr()方法的用法,该方法用来计算DataFrame对象中所有列之间的相关系数(包括pearson相关系数、Kendall Tau相关系数和spearman秩相关)。

>>> import numpy as np>>> import pandas as pd>>> df = pd.DataFrame({'A':np.random.randint(1, 100, 10), 'B':np.random.randint(1, 100, 10), 'C':np.random.randint(1, 100, 10)})>>> df A B C0 5 91 31 90 15 662 93 27 33 70 44 664 27 14 105 35 46 206 33 14 697 12 41 158 28 62 479 15 92 77>>> df.corr() # pearson相关系数 A B CA 1.000000 -0.560009 0.162105B -0.560009 1.000000 0.014687C 0.162105 0.014687 1.000000>>> df.corr('kendall') # Kendall Tau相关系数 A B CA 1.000000 -0.314627 0.113666B -0.314627 1.000000 0.045980C 0.113666 0.045980 1.000000>>> df.corr('spearman') # spearman秩相关 A B CA 1.000000 -0.419455 0.128051B -0.419455 1.000000 0.067279C 0.128051 0.067279 1.000000

以上这篇Python+pandas计算数据相关系数的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章