时间:2021-05-22
对于 PyTorch 的基本数据对象 Tensor (张量),在处理问题时,需要经常改变数据的维度,以便于后期的计算和进一步处理,本文旨在列举一些维度变换的方法并举例,方便大家查看。
维度查看:torch.Tensor.size()
查看当前 tensor 的维度
举个例子:
>>> import torch>>> a = torch.Tensor([[[1, 2], [3, 4], [5, 6]]])>>> a.size()torch.Size([1, 3, 2])张量变形:torch.Tensor.view(*args) → Tensor
返回一个有相同数据但大小不同的 tensor。 返回的 tensor 必须有与原 tensor 相同的数据和相同数目的元素,但可以有不同的大小。一个 tensor 必须是连续的 contiguous() 才能被查看。
举个例子:
>>> x = torch.randn(2, 9)>>> x.size()torch.Size([2, 9])>>> xtensor([[-1.6833, -0.4100, -1.5534, -0.6229, -1.0310, -0.8038, 0.5166, 0.9774, 0.3455], [-0.2306, 0.4217, 1.2874, -0.3618, 1.7872, -0.9012, 0.8073, -1.1238, -0.3405]])>>> y = x.view(3, 6)>>> y.size()torch.Size([3, 6])>>> ytensor([[-1.6833, -0.4100, -1.5534, -0.6229, -1.0310, -0.8038], [ 0.5166, 0.9774, 0.3455, -0.2306, 0.4217, 1.2874], [-0.3618, 1.7872, -0.9012, 0.8073, -1.1238, -0.3405]])>>> z = x.view(2, 3, 3)>>> z.size()torch.Size([2, 3, 3])>>> ztensor([[[-1.6833, -0.4100, -1.5534], [-0.6229, -1.0310, -0.8038], [ 0.5166, 0.9774, 0.3455]], [[-0.2306, 0.4217, 1.2874], [-0.3618, 1.7872, -0.9012], [ 0.8073, -1.1238, -0.3405]]])可以看到 x 和 y 、z 中数据的数量和每个数据的大小都是相等的,只是尺寸或维度数量发生了改变。
压缩 / 解压张量:torch.squeeze()、torch.unsqueeze()
将输入张量形状中的 1 去除并返回。如果输入是形如(A×1×B×1×C×1×D),那么输出形状就为: (A×B×C×D)
当给定 dim 时,那么挤压操作只在给定维度上。例如,输入形状为: (A×1×B),squeeze(input, 0) 将会保持张量不变,只有用 squeeze(input, 1),形状会变成 (A×B)。
返回张量与输入张量共享内存,所以改变其中一个的内容会改变另一个。
举个例子:
>>> x = torch.randn(3, 1, 2)>>> xtensor([[[-0.1986, 0.4352]], [[ 0.0971, 0.2296]], [[ 0.8339, -0.5433]]])>>> x.squeeze().size() # 不加参数,去掉所有为元素个数为1的维度torch.Size([3, 2])>>> x.squeeze()tensor([[-0.1986, 0.4352], [ 0.0971, 0.2296], [ 0.8339, -0.5433]])>>> torch.squeeze(x, 0).size() # 加上参数,去掉第一维的元素,不起作用,因为第一维有2个元素torch.Size([3, 1, 2])>>> torch.squeeze(x, 1).size() # 加上参数,去掉第二维的元素,正好为 1,起作用torch.Size([3, 2])可以看到如果加参数,只有维度中尺寸为 1 的位置才会消失
返回一个新的张量,对输入的制定位置插入维度 1
返回张量与输入张量共享内存,所以改变其中一个的内容会改变另一个。
如果 dim 为负,则将会被转化 dim+input.dim()+1
接着用上面的数据举个例子:
>>> x.unsqueeze(0).size()torch.Size([1, 3, 1, 2])>>> x.unsqueeze(0)tensor([[[[-0.1986, 0.4352]], [[ 0.0971, 0.2296]], [[ 0.8339, -0.5433]]]])>>> x.unsqueeze(-1).size()torch.Size([3, 1, 2, 1])>>> x.unsqueeze(-1)tensor([[[[-0.1986], [ 0.4352]]], [[[ 0.0971], [ 0.2296]]], [[[ 0.8339], [-0.5433]]]])可以看到在指定的位置,增加了一个维度。
扩大张量:torch.Tensor.expand(*sizes) → Tensor
返回 tensor 的一个新视图,单个维度扩大为更大的尺寸。 tensor 也可以扩大为更高维,新增加的维度将附在前面。 扩大 tensor 不需要分配新内存,只是仅仅新建一个 tensor 的视图,其中通过将 stride 设为 0,一维将会扩展位更高维。任何一个一维的在不分配新内存情况下可扩展为任意的数值。
举个例子:
>>> x = torch.Tensor([[1], [2], [3]])>>> x.size()torch.Size([3, 1])>>> x.expand(3, 4)tensor([[1., 1., 1., 1.], [2., 2., 2., 2.], [3., 3., 3., 3.]])>>> x.expand(3, -1)tensor([[1.], [2.], [3.]])原数据是 3 行 1 列,扩大后变为 3 行 4 列,方法中填 -1 的效果与 1 一样,只有尺寸为 1 才可以扩大,如果不为 1 就无法改变,而且尺寸不为 1 的维度必须要和原来一样填写进去。
重复张量:torch.Tensor.repeat(*sizes)
沿着指定的维度重复 tensor。 不同于 expand(),本函数复制的是 tensor 中的数据。
举个例子:
>>> x = torch.Tensor([1, 2, 3])>>> x.size()torch.Size([3])>>> x.repeat(4, 2) [1., 2., 3., 1., 2., 3.], [1., 2., 3., 1., 2., 3.], [1., 2., 3., 1., 2., 3.]])>>> x.repeat(4, 2).size()torch.Size([4, 6])原数据为 1 行 3 列,按行方向扩大为原来的 4 倍,列方向扩大为原来的 2 倍,变为了 4 行 6 列。
变化时可以看成是把原数据作成一个整体,再按指定的维度和尺寸重复,变成一个 4 行 2 列的矩阵,其中的每一个单位都是相同的,再把原数据放到每个单位中。
矩阵转置:torch.t(input, out=None) → Tensor
输入一个矩阵(2维张量),并转置0, 1维。 可以被视为函数 transpose(input, 0, 1) 的简写函数。
举个例子:
>>> x = torch.randn(3, 5)>>> xtensor([[-1.0752, -0.9706, -0.8770, -0.4224, 0.9776], [ 0.2489, -0.2986, -0.7816, -0.0823, 1.1811], [-1.1124, 0.2160, -0.8446, 0.1762, -0.5164]])>>> x.t()tensor([[-1.0752, 0.2489, -1.1124], [-0.9706, -0.2986, 0.2160], [-0.8770, -0.7816, -0.8446], [-0.4224, -0.0823, 0.1762], [ 0.9776, 1.1811, -0.5164]])>>> torch.t(x) # 另一种用法tensor([[-1.0752, 0.2489, -1.1124], [-0.9706, -0.2986, 0.2160], [-0.8770, -0.7816, -0.8446], [-0.4224, -0.0823, 0.1762], [ 0.9776, 1.1811, -0.5164]])必须要是 2 维的张量,也就是矩阵,才可以使用。
维度置换:torch.transpose()、torch.Tensor.permute()
返回输入矩阵 input 的转置。交换维度 dim0 和 dim1。 输出张量与输入张量共享内存,所以改变其中一个会导致另外一个也被修改。
举个例子:
>>> x = torch.randn(2, 4, 3)>>> xtensor([[[-1.2502, -0.7363, 0.5534], [-0.2050, 3.1847, -1.6729], [-0.2591, -0.0860, 0.4660], [-1.2189, -1.1206, 0.0637]], [[ 1.4791, -0.7569, 2.5017], [ 0.0098, -1.0217, 0.8142], [-0.2414, -0.1790, 2.3506], [-0.6860, -0.2363, 1.0481]]])>>> torch.transpose(x, 1, 2).size()torch.Size([2, 3, 4])>>> torch.transpose(x, 1, 2)tensor([[[-1.2502, -0.2050, -0.2591, -1.2189], [-0.7363, 3.1847, -0.0860, -1.1206], [ 0.5534, -1.6729, 0.4660, 0.0637]], [[ 1.4791, 0.0098, -0.2414, -0.6860], [-0.7569, -1.0217, -0.1790, -0.2363], [ 2.5017, 0.8142, 2.3506, 1.0481]]])>>> torch.transpose(x, 0, 1).size()torch.Size([4, 2, 3])>>> torch.transpose(x, 0, 1)tensor([[[-1.2502, -0.7363, 0.5534], [ 1.4791, -0.7569, 2.5017]], [[-0.2050, 3.1847, -1.6729], [ 0.0098, -1.0217, 0.8142]], [[-0.2591, -0.0860, 0.4660], [-0.2414, -0.1790, 2.3506]], [[-1.2189, -1.1206, 0.0637], [-0.6860, -0.2363, 1.0481]]])可以对多维度的张量进行转置
将 tensor 的维度换位
接着用上面的数据举个例子:
>>> x.size()torch.Size([2, 4, 3])>>> x.permute(2, 0, 1).size()torch.Size([3, 2, 4])>>> x.permute(2, 0, 1)tensor([[[-1.2502, -0.2050, -0.2591, -1.2189], [ 1.4791, 0.0098, -0.2414, -0.6860]], [[-0.7363, 3.1847, -0.0860, -1.1206], [-0.7569, -1.0217, -0.1790, -0.2363]], [[ 0.5534, -1.6729, 0.4660, 0.0637], [ 2.5017, 0.8142, 2.3506, 1.0481]]])直接在方法中填入各个维度的索引,张量就会交换指定维度的尺寸,不限于两两交换。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
numpy中的ndarray转化成pytorch中的tensor:torch.from_numpy()pytorch中的tensor转化成numpy中的ndar
1.扩展Tensor维度 相信刚接触Pytorch的宝宝们,会遇到这样一个问题,输入的数据维度和实验需要维度不一致,输入的可能是2维数据或3维数据,实验需要用
PyTorch基础入门一:PyTorch基本数据类型1)Tensor(张量)Pytorch里面处理的最基本的操作对象就是Tensor(张量),它表示的其实就是一
在pytorch中,Tensor是以引用的形式存在的,故而并不能直接像python交换数据那样a=torch.Tensor(3,4)a[0],a[1]=a[1]
在pytorch的CNN代码中经常会看到x.view(x.size(0),-1)首先,在pytorch中的view()函数就是用来改变tensor的形状的,例如