时间:2021-05-22
本文实例为大家分享了python opencv实现图像配准与比较的具体代码,供大家参考,具体内容如下
代码
from skimage import ioimport cv2 as cvimport numpy as npimport matplotlib.pyplot as plt img_path1 = '2_HE_maxarea.png'img_path2 = '2_IHC_maxarea.png' img1 = io.imread(img_path1)img2 = io.imread(img_path2)img1 = np.uint8(img1)img2 = np.uint8(img2) # find the keypoints and descriptors with ORBorb = cv.ORB_create()kp1, des1 = orb.detectAndCompute(img1,None)kp2, des2 = orb.detectAndCompute(img2,None) # def get_good_match(des1,des2):# bf = cv.BFMatcher()# matches = bf.knnMatch(des1, des2, k=2)# good = []# for m, n in matches:# if m.distance < 0.75 * n.distance:# good.append(m)# return good,matches# goodMatch,matches = get_good_match(des1,des2)# img3 = cv.drawMatchesKnn(img1,kp1,img2,kp2,matches[:20],None,flags=2) # create BFMatcher objectbf = cv.BFMatcher(cv.NORM_HAMMING, crossCheck=True)# Match descriptors.matches = bf.match(des1,des2)# Sort them in the order of their distance.matches = sorted(matches, key = lambda x:x.distance)# Draw first 20 matches.img3 = cv.drawMatches(img1,kp1,img2,kp2,matches[:20],None, flags=2) goodMatch = matches[:20]if len(goodMatch) > 4: ptsA= np.float32([kp1[m.queryIdx].pt for m in goodMatch]).reshape(-1, 1, 2) ptsB = np.float32([kp2[m.trainIdx].pt for m in goodMatch]).reshape(-1, 1, 2) ransacReprojThreshold = 4 H, status =cv.findHomography(ptsA,ptsB,cv.RANSAC,ransacReprojThreshold); #其中H为求得的单应性矩阵矩阵 #status则返回一个列表来表征匹配成功的特征点。 #ptsA,ptsB为关键点 #cv2.RANSAC, ransacReprojThreshold这两个参数与RANSAC有关 imgOut = cv.warpPerspective(img2, H, (img1.shape[1],img1.shape[0]),flags=cv.INTER_LINEAR + cv.WARP_INVERSE_MAP) # 叠加配准变换图与基准图rate = 0.5overlapping = cv.addWeighted(img1, rate, imgOut, 1-rate, 0)io.imsave('HE_2_IHC.png', overlapping)err = cv.absdiff(img1,imgOut) # 显示对比plt.subplot(221)plt.title('orb')plt.imshow(img3) plt.subplot(222)plt.title('imgOut')plt.imshow(imgOut) plt.subplot(223)plt.title('overlapping')plt.imshow(overlapping) plt.subplot(224) plt.title('diff') plt.imshow(err) plt.show()结果:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例为大家分享了利用python和OpenCV实现图像拼接,供大家参考,具体内容如下python+OpenCV实现imagestitching在最新的Ope
本文实例讲述了Python图像处理之简单画板实现方法。分享给大家供大家参考,具体如下:Python图像处理也是依赖opencv的Python接口实现的,Pyth
利用Python+opencv实现从摄像头捕获图像,识别其中的人眼/人脸,并打上马赛克。系统环境:Windows7+Python3.6.3+opencv3.4.
下载opencv2.4.9(python2.7匹配)后(1)运行OpenCV2.4.9.exe;(2)配置Python:将\opencv\build\pytho
下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建。于是迫不及待的想体验一下opencv的人脸识别,如下文。必备知识Haar-