时间:2021-05-22
本文实例为大家分享了Python实点云分割k-means(sklearn),供大家参考,具体内容如下
植物叶片分割
import numpy as npimport matplotlib.pyplot as pltimport pandas as pdfrom sklearn.cluster import KMeansfrom sklearn.preprocessing import StandardScalerfrom mpl_toolkits.mplot3d import Axes3Ddata = pd.read_csv("jiaaobo1.txt",sep = " ")data1 = data.iloc[:,0:3]#标准化transfer = StandardScaler()data_new = transfer.fit_transform(data1)data_new#预估计流程estimator = KMeans(n_clusters = 10)estimator.fit(data_new)y_pred = estimator.predict(data_new)#也可以不预测#cluster = KMeans(n_clusters = 9).fit(data_new)#y_pred = cluster.labels_s#质心 #centroid = cluster.cluster_centers_#centroid.shapefig = plt.figure()ax = Axes3D(fig)for i in range(9): ax.scatter3D(data_new[y_pred == i,0],data_new[y_pred == i,1],data_new[y_pred == i,2],marker = ".")ax.view_init(elev = 60,azim = 30)ax.set_zlabel('Z')ax.set_ylabel('Y')ax.set_xlabel('X')plt.show()以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
k-means算法思想较简单,说的通俗易懂点就是物以类聚,花了一点时间在python中实现k-means算法,k-means算法有本身的缺点,比如说k初始位置的
大家在学习python中,经常会使用到K-Means和图片压缩的,我们在此给大家分享一下K-Means和图片压缩的方法和原理,喜欢的朋友收藏一下吧。通俗的介绍这
K-Means算法是一种基于距离的聚类算法,采用迭代的方法,计算出K个聚类中心,把若干个点聚成K类。MLlib实现K-Means算法的原理是,运行多个K-Mea
k-means聚类算法k-means是发现给定数据集的k个簇的算法,也就是将数据集聚合为k类的算法。算法过程如下:1)从N个文档随机选取K个文档作为质心2)对剩
K-means算法简介K-means是机器学习中一个比较常用的算法,属于无监督学习算法,其常被用于数据的聚类,只需为它指定簇的数量即可自动将数据聚合到多类中,相