时间:2021-05-22
本文实例为大家分享了python实现三次样条插值的具体代码,供大家参考,具体内容如下
函数:
算法分析
三次样条插值。就是在分段插值的一种情况。
要求:
这里话,根据第一类样条作为边界。(就是知道两端节点的导数数值,然后来做三次样条插值)
但是这里也分为两种情况,分别是这个数值是随便给的一个数,还是说根据函数的在对应点上数值给出。
情况一:两边导数数值给出
这里假设数值均为1。即 f′(x0)=f′(xn)=f′(xn)=1的情况。
情况一图像
情况一代码
import numpy as npfrom sympy import *import matplotlib.pyplot as pltdef f(x): return 1 / (1 + x ** 2)def cal(begin, end, i): by = f(begin) ey = f(end) I = Ms[i] * ((end - n) ** 3) / 6 + Ms[i + 1] * ((n - begin) ** 3) / 6 + (by - Ms[i] / 6) * (end - n) + ( ey - Ms[i + 1] / 6) * (n - begin) return Idef ff(x): # f[x0, x1, ..., xk] ans = 0 for i in range(len(x)): temp = 1 for j in range(len(x)): if i != j: temp *= (x[i] - x[j]) ans += f(x[i]) / temp return ansdef calM(): lam = [1] + [1 / 2] * 9 miu = [1 / 2] * 9 + [1] # Y = 1 / (1 + n ** 2) # df = diff(Y, n) x = np.array(range(11)) - 5 # ds = [6 * (ff(x[0:2]) - df.subs(n, x[0]))] ds = [6 * (ff(x[0:2]) - 1)] for i in range(9): ds.append(6 * ff(x[i: i + 3])) # ds.append(6 * (df.subs(n, x[10]) - ff(x[-2:]))) ds.append(6 * (1 - ff(x[-2:]))) Mat = np.eye(11, 11) * 2 for i in range(11): if i == 0: Mat[i][1] = lam[i] elif i == 10: Mat[i][9] = miu[i - 1] else: Mat[i][i - 1] = miu[i - 1] Mat[i][i + 1] = lam[i] ds = np.mat(ds) Mat = np.mat(Mat) Ms = ds * Mat.I return Ms.tolist()[0]def calnf(x): nf = [] for i in range(len(x) - 1): nf.append(cal(x[i], x[i + 1], i)) return nfdef calf(f, x): y = [] for i in x: y.append(f.subs(n, i)) return ydef nfSub(x, nf): tempx = np.array(range(11)) - 5 dx = [] for i in range(10): labelx = [] for j in range(len(x)): if x[j] >= tempx[i] and x[j] < tempx[i + 1]: labelx.append(x[j]) elif i == 9 and x[j] >= tempx[i] and x[j] <= tempx[i + 1]: labelx.append(x[j]) dx = dx + calf(nf[i], labelx) return np.array(dx)def draw(nf): plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False x = np.linspace(-5, 5, 101) y = f(x) Ly = nfSub(x, nf) plt.plot(x, y, label='原函数') plt.plot(x, Ly, label='三次样条插值函数') plt.xlabel('x') plt.ylabel('y') plt.legend() plt.savefig('1.png') plt.show()def lossCal(nf): x = np.linspace(-5, 5, 101) y = f(x) Ly = nfSub(x, nf) Ly = np.array(Ly) temp = Ly - y temp = abs(temp) print(temp.mean())if __name__ == '__main__': x = np.array(range(11)) - 5 y = f(x) n, m = symbols('n m') init_printing(use_unicode=True) Ms = calM() nf = calnf(x) draw(nf) lossCal(nf)情况二:两边导数数值由函数本身算出
这里假设数值均为1。即 f′(xi)=S′(xi)(i=0,n)f′(xi)=S′(xi)(i=0,n)的情况。
情况二图像
情况二代码
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例为大家分享了python样条插值的具体实现代码,供大家参考,具体内容如下importnumpyasnpimportpandasaspdimportmat
本文实例讲述了Python实现账号密码输错三次即锁定功能。分享给大家供大家参考,具体如下:初学Python—1#实现账号输错三次即锁定user="hubery"
本文实例讲述了Python使用scipy模块实现一维卷积运算。分享给大家供大家参考,具体如下:一介绍signal模块包含大量滤波函数、B样条插值算法等等。下面的
一维插值插值不同于拟合。插值函数经过样本点,拟合函数一般基于最小二乘法尽量靠近所有样本点穿过。常见插值方法有拉格朗日插值法、分段插值法、样条插值法。拉格朗日插值
一维插值插值不同于拟合。插值函数经过样本点,拟合函数一般基于最小二乘法尽量靠近所有样本点穿过。常见插值方法有拉格朗日插值法、分段插值法、样条插值法。拉格朗日插值