时间:2021-05-22
本文实例讲述了Python基于生成器迭代实现的八皇后问题。分享给大家供大家参考,具体如下:
问题:有一个棋盘和8个要放到上面的皇后,唯一的要求是皇后之间不能形成威胁。也就是说,必须把他们防止成每个皇后都不能吃掉其他皇后的状态。
# -*- coding: utf-8 -*-#python 2.7.13__metaclass__ = typedef confict(state, nextX): nextY = len(state) for i in range(nextY): if abs(state[i] - nextX) in (0, nextY - i): return True return Falsedef queens(num=8, state=()): for pos in range(num): if not confict(state, pos): if len(state) == num -1: yield (pos,) else: for result in queens(num, state + (pos,)): yield (pos,) + resultprint list(queens()) #打印输出运行结果:
[(0, 4, 7, 5, 2, 6, 1, 3), (0, 5, 7, 2, 6, 3, 1, 4), (0, 6, 3, 5, 7, 1, 4, 2), (0, 6, 4, 7, 1, 3, 5, 2), (1, 3, 5, 7, 2, 0, 6, 4), (1, 4, 6, 0, 2, 7, 5, 3), (1, 4, 6, 3, 0, 7, 5, 2), (1, 5, 0, 6, 3, 7, 2, 4), (1, 5, 7, 2, 0, 3, 6, 4), (1, 6, 2, 5, 7, 4, 0, 3), (1, 6, 4, 7, 0, 3, 5, 2), (1, 7, 5, 0, 2, 4, 6, 3), (2, 0, 6, 4, 7, 1, 3, 5), (2, 4, 1, 7, 0, 6, 3, 5), (2, 4, 1, 7, 5, 3, 6, 0), (2, 4, 6, 0, 3, 1, 7, 5), (2, 4, 7, 3, 0, 6, 1, 5), (2, 5, 1, 4, 7, 0, 6, 3), (2, 5, 1, 6, 0, 3, 7, 4), (2, 5, 1, 6, 4, 0, 7, 3), (2, 5, 3, 0, 7, 4, 6, 1), (2, 5, 3, 1, 7, 4, 6, 0), (2, 5, 7, 0, 3, 6, 4, 1), (2, 5, 7, 0, 4, 6, 1, 3), (2, 5, 7, 1, 3, 0, 6, 4), (2, 6, 1, 7, 4, 0, 3, 5), (2, 6, 1, 7, 5, 3, 0, 4), (2, 7, 3, 6, 0, 5, 1, 4), (3, 0, 4, 7, 1, 6, 2, 5), (3, 0, 4, 7, 5, 2, 6, 1), (3, 1, 4, 7, 5, 0, 2, 6), (3, 1, 6, 2, 5, 7, 0, 4), (3, 1, 6, 2, 5, 7, 4, 0), (3, 1, 6, 4, 0, 7, 5, 2), (3, 1, 7, 4, 6, 0, 2, 5), (3, 1, 7, 5, 0, 2, 4, 6), (3, 5, 0, 4, 1, 7, 2, 6), (3, 5, 7, 1, 6, 0, 2, 4), (3, 5, 7, 2, 0, 6, 4, 1), (3, 6, 0, 7, 4, 1, 5, 2), (3, 6, 2, 7, 1, 4, 0, 5), (3, 6, 4, 1, 5, 0, 2, 7), (3, 6, 4, 2, 0, 5, 7, 1), (3, 7, 0, 2, 5, 1, 6, 4), (3, 7, 0, 4, 6, 1, 5, 2), (3, 7, 4, 2, 0, 6, 1, 5), (4, 0, 3, 5, 7, 1, 6, 2), (4, 0, 7, 3, 1, 6, 2, 5), (4, 0, 7, 5, 2, 6, 1, 3), (4, 1, 3, 5, 7, 2, 0, 6), (4, 1, 3, 6, 2, 7, 5, 0), (4, 1, 5, 0, 6, 3, 7, 2), (4, 1, 7, 0, 3, 6, 2, 5), (4, 2, 0, 5, 7, 1, 3, 6), (4, 2, 0, 6, 1, 7, 5, 3), (4, 2, 7, 3, 6, 0, 5, 1), (4, 6, 0, 2, 7, 5, 3, 1), (4, 6, 0, 3, 1, 7, 5, 2), (4, 6, 1, 3, 7, 0, 2, 5), (4, 6, 1, 5, 2, 0, 3, 7), (4, 6, 1, 5, 2, 0, 7, 3), (4, 6, 3, 0, 2, 7, 5, 1), (4, 7, 3, 0, 2, 5, 1, 6), (4, 7, 3, 0, 6, 1, 5, 2), (5, 0, 4, 1, 7, 2, 6, 3), (5, 1, 6, 0, 2, 4, 7, 3), (5, 1, 6, 0, 3, 7, 4, 2), (5, 2, 0, 6, 4, 7, 1, 3), (5, 2, 0, 7, 3, 1, 6, 4), (5, 2, 0, 7, 4, 1, 3, 6), (5, 2, 4, 6, 0, 3, 1, 7), (5, 2, 4, 7, 0, 3, 1, 6), (5, 2, 6, 1, 3, 7, 0, 4), (5, 2, 6, 1, 7, 4, 0, 3), (5, 2, 6, 3, 0, 7, 1, 4), (5, 3, 0, 4, 7, 1, 6, 2), (5, 3, 1, 7, 4, 6, 0, 2), (5, 3, 6, 0, 2, 4, 1, 7), (5, 3, 6, 0, 7, 1, 4, 2), (5, 7, 1, 3, 0, 6, 4, 2), (6, 0, 2, 7, 5, 3, 1, 4), (6, 1, 3, 0, 7, 4, 2, 5), (6, 1, 5, 2, 0, 3, 7, 4), (6, 2, 0, 5, 7, 4, 1, 3), (6, 2, 7, 1, 4, 0, 5, 3), (6, 3, 1, 4, 7, 0, 2, 5), (6, 3, 1, 7, 5, 0, 2, 4), (6, 4, 2, 0, 5, 7, 1, 3), (7, 1, 3, 0, 6, 4, 2, 5), (7, 1, 4, 2, 0, 6, 3, 5), (7, 2, 0, 5, 1, 4, 6, 3), (7, 3, 0, 2, 5, 1, 6, 4)]
输出列表长度:
print len(list(queens()))# 输出:92更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》
希望本文所述对大家Python程序设计有所帮助。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
前言生成器generator生成器的本质是一个迭代器(iterator)要理解生成器,就要在理解一下迭代,可迭代对象,迭代器,这三个概念Python生成器gen
生成器就是自己用python代码写的迭代器,生成器的本质就是迭代器。通过以下两种方式构建一个生成器:1、通过生成器函数2、生成器表达式生成器函数:函数deffu
4.生成器(generator)4.1.生成器简介首先请确信,生成器就是一种迭代器。生成器拥有next方法并且行为与迭代器完全相同,这意味着生成器也可以用于Py
Python中迭代器与生成器实例详解本文通过针对不同应用场景及其解决方案的方式,总结了Python中迭代器与生成器的一些相关知识,具体如下:1.手动遍历迭代器应
本文实例讲述了python生成器用法。分享给大家供大家参考,具体如下:1.生成器利用迭代器,我们可以在每次迭代获取数据(通过next()方法)时按照特定的规律进