时间:2021-05-22
pytorch实现线性回归代码练习实例,供大家参考,具体内容如下
欢迎大家指正,希望可以通过小的练习提升对于pytorch的掌握
# 随机初始化一个二维数据集,使用朋友torch训练一个回归模型import numpy as npimport randomimport matplotlib.pyplot as pltx = np.arange(20)y = np.array([5*x[i] + random.randint(1,20) for i in range(len(x))]) # random.randint(参数1,参数2)函数返回参数1和参数2之间的任意整数print('-'*50)# 打印数据集print(x)print(y)import torchx_train = torch.from_numpy(x).float()y_train = torch.from_numpy(y).float()# modelclass LinearRegression(torch.nn.Module): def __init__(self): super(LinearRegression, self).__init__() # 输入与输出都是一维的 self.linear = torch.nn.Linear(1,1) def forward(self,x): return self.linear(x)# 新建模型,误差函数,优化器model = LinearRegression()criterion = torch.nn.MSELoss()optimizer = torch.optim.SGD(model.parameters(),0.001)# 开始训练num_epoch = 20for i in range(num_epoch): input_data = x_train.unsqueeze(1) target = y_train.unsqueeze(1) # unsqueeze(1)在第二维增加一个维度 out = model(input_data) loss = criterion(out,target) optimizer.zero_grad() loss.backward() optimizer.step() print("Eopch:[{}/{},loss:[{:.4f}]".format(i+1,num_epoch,loss.item())) if ((i+1)%2 == 0): predict = model(input_data) plt.plot(x_train.data.numpy(),predict.squeeze(1).data.numpy(),"r") loss = criterion(predict,target) plt.title("Loss:{:.4f}".format(loss.item())) plt.xlabel("X") plt.ylabel("Y") plt.scatter(x_train,y_train) plt.show()实验结果:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例为大家分享了pytorch实现线性回归的具体代码,供大家参考,具体内容如下线性回归都是包括以下几个步骤:定义模型、选择损失函数、选择优化函数、训练数据、
本文实例为大家分享了pytorch实现线性回归以及多元回归的具体代码,供大家参考,具体内容如下最近在学习pytorch,现在把学习的代码放在这里,下面是gith
本文实例为大家分享了pytorch使用Variable实现线性回归的具体代码,供大家参考,具体内容如下一、手动计算梯度实现线性回归#导入相关包importtor
线性回归实战使用PyTorch定义线性回归模型一般分以下几步:1.设计网络架构2.构建损失函数(loss)和优化器(optimizer)3.训练(包括前馈(fo
PyTorch基础入门三:PyTorch搭建多项式回归模型1)理论简介对于一般的线性回归模型,由于该函数拟合出来的是一条直线,所以精度欠佳,我们可以考虑多项式回