时间:2021-05-22
pytorch中训练完网络后,需要对学习的结果进行测试。官网上例程用的方法统统都是正确率,使用的是torch.eq()这个函数。
但是为了更精细的评价结果,我们还需要计算其他各个指标。在把官网API翻了一遍之后发现并没有用于计算TP,TN,FP,FN的函数。。。
在动了无数歪脑筋之后,心想pytorch完全支持numpy,那能不能直接进行判断,试了一下果然可以,上代码:
# TP predict 和 label 同时为1TP += ((pred_choice == 1) & (target.data == 1)).cpu().sum()# TN predict 和 label 同时为0TN += ((pred_choice == 0) & (target.data == 0)).cpu().sum()# FN predict 0 label 1FN += ((pred_choice == 0) & (target.data == 1)).cpu().sum()# FP predict 1 label 0FP += ((pred_choice == 1) & (target.data == 0)).cpu().sum()p = TP / (TP + FP)r = TP / (TP + FN)F1 = 2 * r * p / (r + p)acc = (TP + TN) / (TP + TN + FP + FN这样就能看到各个指标了。
因为target是Variable所以需要用target.data取到对应的tensor,又因为是在gpu上算的,需要用 .cpu() 移到cpu上。
因为这是一个batch的统计,所以需要用+=累计出整个epoch的统计。当然,在epoch开始之前需要清零
以上这篇在pytorch 中计算精度、回归率、F1 score等指标的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
PyTorch基础入门三:PyTorch搭建多项式回归模型1)理论简介对于一般的线性回归模型,由于该函数拟合出来的是一条直线,所以精度欠佳,我们可以考虑多项式回
垃圾网页识别技术的评价。对垃圾网页识别的技术实现效果好不好需要有评价指标,常见的评价指标通常有准确率、召回率和F1测度这3种。准确率被定义为实际正确被判断为垃圾
本文实例为大家分享了pytorch使用Variable实现线性回归的具体代码,供大家参考,具体内容如下一、手动计算梯度实现线性回归#导入相关包importtor
一、名词解释:主营率计算逻辑:主营率是包括类目成交额、类目在售商品数量两项指标的一个综合评估数据,取值范围为近30天,其中两项数据对综合指标的影响占比约为1:1
BIOS设置,快捷键一般在开机的时候会在屏幕上显示出来,注意仔细看。很多计算机都是"F2"键。 IBM(冷开机按F1,部分新型号可以在重新启动时启动按F1)