时间:2021-05-22
numpy.std() 求标准差的时候默认是除以 n 的,即是有偏的,np.std无偏样本标准差方式为加入参数 ddof = 1;
pandas.std() 默认是除以n-1 的,即是无偏的,如果想和numpy.std() 一样有偏,需要加上参数ddof=0 ,即pandas.std(ddof=0) ;DataFrame的describe()中就包含有std();
demo:
>>> aarray([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])>>> np.std(a, ddof = 1)3.0276503540974917>>> np.sqrt(((a - np.mean(a)) ** 2).sum() / (a.size - 1))3.0276503540974917>>> np.sqrt(( a.var() * a.size) / (a.size - 1))3.0276503540974917PS:numpy中标准差std的神坑
我们用Matlab作为对比。计算标准差,得到:
>> std([1,2,3])ans = 1然而在numpy中:
>>> np.std([1,2,3])0.81649658092772603什么鬼!这么简单的都能出错?原因在于,np.std有这么一个参数:
ddof : int, optional
Means Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. By default ddof is zero.
因此,想要正确调用,必须使ddof=1:
>>> np.std([1,2,3], ddof=1)1.0而且,这一特性还影响到了许多基于numpy的包。比如scikit-learn里的StandardScaler。想要正确调用,只能自己手动设置参数:
ss = StandardScaler()ss.mean_ = np.mean(X, axis=0)ss.scale_ = np.std(X, axis=0, ddof=1)X_norm = ss.transform(X)当X数据量较大时无所谓,当X数据量较小时则要尤为注意。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
计算矩阵标准差>>>a=np.array([[1,2],[3,4]])>>>np.std(a)#计算全局标准差1.1180339887498949>>>np.s
excel标准差函数是什?excel怎么计算标准差呢?其实在生活中标准差是经常使用到的,它表示一组数据的离散程度,数值越大,预示着离散程度越大;数值越小,预示着
怎样才能计算Excel中的标准差呢?标准差能够表示一组数据的离散程度,数值越大离散程度越大,如何计算一组数据的标准差呢?现在就为大家简单介绍一下 方法/步
怎样才能计算Excel中的标准差呢?标准差能够表示一组数据的离散程度,数值越大离散程度越大,如何计算一组数据的标准差呢?现在就为大家简单介绍一下软件名称:Exc
标准差是方差的算术平方根;标准差用s表示。方差是标准差的平方;方差用s^2表示。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。 标准差