时间:2021-05-22
OCR of Hand-written Data using kNN
OCR of Hand-written Digits
我们的目标是构建一个可以读取手写数字的应用程序, 为此,我们需要一些train_data和test_data. OpenCV附带一个images digits.png(在文件夹opencv\sources\samples\data\中),它有5000个手写数字(每个数字500个,每个数字是20x20图像).所以首先要将图片切割成5000个不同图片,每个数字变成一个单行400像素.前面的250个数字作为训练数据,后250个作为测试数据.
import numpy as npimport cv2import matplotlib.pyplot as pltimg = cv2.imread('digits.png')gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)# Now we split the image to 5000 cells, each 20x20 sizecells = [np.hsplit(row,100) for row in np.vsplit(gray,50)]# Make it into a Numpy array. It size will be (50,100,20,20)x = np.array(cells)# Now we prepare train_data and test_data.train = x[:,:50].reshape(-1,400).astype(np.float32) # Size = (2500,400)test = x[:,50:100].reshape(-1,400).astype(np.float32) # Size = (2500,400)# Create labels for train and test datak = np.arange(10)train_labels = np.repeat(k,250)[:,np.newaxis]test_labels = train_labels.copy()# Initiate kNN, train the data, then test it with test data for k=1knn = cv2.ml.KNearest_create()knn.train(train, cv2.ml.ROW_SAMPLE, train_labels)ret,result,neighbours,dist = knn.findNearest(test,k=5)# Now we check the accuracy of classification# For that, compare the result with test_labels and check which are wrongmatches = result==test_labelscorrect = np.count_nonzero(matches)accuracy = correct*100.0/result.sizeprint( accuracy )输出:91.76
进一步提高准确率的方法是增加训练数据,特别是错误的数据.每次训练时最好是保存训练数据,以便下次使用.
# save the datanp.savez('knn_data.npz',train=train, train_labels=train_labels)# Now load the datawith np.load('knn_data.npz') as data: print( data.files ) train = data['train'] train_labels = data['train_labels']OCR of English Alphabets
在opencv / samples / data /文件夹中附带一个数据文件letter-recognition.data.在每一行中,第一列是一个字母表,它是我们的标签. 接下来的16个数字是它的不同特征.
import numpy as npimport cv2import matplotlib.pyplot as plt# Load the data, converters convert the letter to a numberdata= np.loadtxt('letter-recognition.data', dtype= 'float32', delimiter = ',', converters= {0: lambda ch: ord(ch)-ord('A')})# split the data to two, 10000 each for train and testtrain, test = np.vsplit(data,2)# split trainData and testData to features and responsesresponses, trainData = np.hsplit(train,[1])labels, testData = np.hsplit(test,[1])# Initiate the kNN, classify, measure accuracy.knn = cv2.ml.KNearest_create()knn.train(trainData, cv2.ml.ROW_SAMPLE, responses)ret, result, neighbours, dist = knn.findNearest(testData, k=5)correct = np.count_nonzero(result == labels)accuracy = correct*100.0/10000print( accuracy )输出:93.06
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例为大家分享了用KNN算法手写体识别的具体代码,供大家参考,具体内容如下#!/usr/bin/python#coding:utf-8importnumpy
本文实例为大家分享了pytorch实现MNIST手写体识别的具体代码,供大家参考,具体内容如下实验环境pytorch1.4Windows10python3.7c
本文实例讲述了Python实现基于KNN算法的笔迹识别功能。分享给大家供大家参考,具体如下:需要用到:Numpy库Pandas库手写识别数据点击此处本站下载。数
0.引言 平时上网干啥的基本上都会接触验证码,或者在机器学习学习过程中,大家或许会接触过手写体识别/验证码识别之类问题,会用到手写体的数据集; 自己尝试写了
本文学习NeuralNetworksandDeepLearning在线免费书籍,用python构建神经网络识别手写体的一个总结。代码主要包括两三部分:1)、数据