时间:2021-05-22
pandas 中 inplace 参数在很多函数中都会有,它的作用是:是否在原对象基础上进行修改
inplace = True:不创建新的对象,直接对原始对象进行修改;
inplace = False:对数据进行修改,创建并返回新的对象承载其修改结果。
默认是False,即创建新的对象进行修改,原对象不变,和深复制和浅复制有些类似。
例:
inplace=True情况:
import pandas as pdimport numpy as npdf=pd.DataFrame(np.random.randn(4,3),columns=["A","B","C"])data=df.drop(["A"],axis=1,inplace=True)print(df)print(data)>> B C0 0.472730 -0.6266851 0.065358 0.0313262 -0.318582 1.1233083 -0.097687 0.018820Noneinplace=False情况:
df=pd.DataFrame(np.random.randn(4,3),columns=["A","B","C"])data=df.drop(["A"],axis=1,inplace=False)print(df)print(data)>> A B C0 -0.731578 0.226483 0.9866561 0.075936 1.622889 1.7679672 -1.477780 -0.164374 -1.0255553 -0.645208 -0.847264 -0.744622 B C0 0.226483 0.9866561 1.622889 1.7679672 -0.164374 -1.0255553 -0.847264 -0.744622另外,要注意的是,inplace的取值只有False和True,如给定0或1,会报如下错误:
ValueError: For argument "inplace" expected type bool, received type int.
补充知识:pandas.DataFrame.drop_duplicates后面inplace=True与inplace=False的区别
drop_duplicates(inplace=True)是直接对原dataFrame进行操作。
如:
t.drop_duplicates(inplace=True) 则,对t中重复将被去除。
drop_duplicates(inplace=False)将不改变原来的dataFrame,而将结果生成在一个新的dataFrame中。
如:
s = t.drop_duplicates(inplace=False) 则,t的内容不发生改变,s的内容是去除重复后的内容
以上这篇对python pandas中 inplace 参数的理解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
一、Python函数中的参数1、使用python的函数时,有参数类别,比如位置参数、关键字参数、可变长参数2、位置参数、关键字参数很好理解,关键是可变长参数经常
在python较新的版本中,pandas.qcut()这个函数中是有duplicates这个参数的,它能解决在等频分箱中遇到的重复值过多引起报错的问题;在比较旧
方法DataFrame.drop_duplicates(subset=None,keep='first',inplace=False)参数这个drop_dupl
本篇将介绍python中sys,getopt模块处理命令行参数如果想对python脚本传参数,python中对应的argc,argv(c语言的命令行参数)是什么
前言大家在使用Python进行数据分析时,经常要使用到的一个数据结构就是pandas的DataFrame,关于python中pandas.DataFrame的基