时间:2021-05-22
Pandas中的resample,重新采样,是对原样本重新处理的一个方法,是一个对常规时间序列数据重新采样和频率转换的便捷的方法。
降采样:高频数据到低频数据
升采样:低频数据到高频数据
主要函数:resample()(pandas对象都会有这个方法)
resample方法的参数
参数 说明 freq 表示重采样频率,例如‘M'、‘5min',Second(15) how='mean' 用于产生聚合值的函数名或数组函数,例如‘mean'、‘ohlc'、np.max等,默认是‘mean',其他常用的值由:‘first'、‘last'、‘median'、‘max'、‘min' axis=0 默认是纵轴,横轴设置axis=1 fill_method = None 升采样时如何插值,比如‘ffill'、‘bfill'等 closed = ‘right' 在降采样时,各时间段的哪一段是闭合的,‘right'或‘left',默认‘right' label= ‘right' 在降采样时,如何设置聚合值的标签,例如,9:30-9:35会被标记成9:30还是9:35,默认9:35 loffset = None 面元标签的时间校正值,比如‘-1s'或Second(-1)用于将聚合标签调早1秒 limit=None 在向前或向后填充时,允许填充的最大时期数 kind = None 聚合到时期(‘period')或时间戳(‘timestamp'),默认聚合到时间序列的索引类型 convention = None 当重采样时期时,将低频率转换到高频率所采用的约定(start或end)。默认‘end'
首先创建一个Series,采样频率为一分钟。
>>> index = pd.date_range('1/1/2000', periods=9, freq='T')>>> series = pd.Series(range(9), index=index)>>> series2000-01-01 00:00:00 02000-01-01 00:01:00 12000-01-01 00:02:00 22000-01-01 00:03:00 32000-01-01 00:04:00 42000-01-01 00:05:00 52000-01-01 00:06:00 62000-01-01 00:07:00 72000-01-01 00:08:00 8Freq: T, dtype: int64降低采样频率为三分钟
>>> series.resample('3T').sum()2000-01-01 00:00:00 32000-01-01 00:03:00 122000-01-01 00:06:00 21Freq: 3T, dtype: int64降低采样频率为三分钟,但是每个标签使用right来代替left。请注意,bucket中值的用作标签。
降低采样频率为三分钟,但是关闭right区间。
>>> series.resample('3T', label='right', closed='right').sum()2000-01-01 00:00:00 02000-01-01 00:03:00 62000-01-01 00:06:00 152000-01-01 00:09:00 15Freq: 3T, dtype: int64增加采样频率到30秒
增加采样频率到30S,使用pad方法填充nan值。
增加采样频率到30S,使用bfill方法填充nan值。
>>> series.resample('30S').bfill()[0:5]2000-01-01 00:00:00 02000-01-01 00:00:30 12000-01-01 00:01:00 12000-01-01 00:01:30 22000-01-01 00:02:00 2Freq: 30S, dtype: int64通过apply运行一个自定义函数
>>> def custom_resampler(array_like):... return np.sum(array_like)+5>>> series.resample('3T').apply(custom_resampler)2000-01-01 00:00:00 82000-01-01 00:03:00 172000-01-01 00:06:00 26Freq: 3T, dtype: int64到此这篇关于pandas的resample重采样的使用的文章就介绍到这了,更多相关pandas resample重采样内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
resample()resample()进行重采样。重采样(Resampling)指的是把时间序列的频度变为另一个频度的过程。把高频度的数据变为低频度叫做降采样
Pandas中的resample,重新采样,是对原样本重新处理的一个方法,是一个对常规时间序列数据重新采样和频率转换的便捷的方法。方法的格式是:DataFram
Pandas提供了便捷的方式对时间序列进行重采样,根据时间粒度的变大或者变小分为降采样和升采样:降采样:时间粒度变大。例如,原来是按天统计的数据,现在变成按周统
python日期的范围、频率、重采样以及频率转换pandas有一整套的标准时间序列频率以及用于重采样、频率推断、生成固定频率日期范围的工具。生成指定日期范围的范
因为工作中会经常遇到不同采样率的声音文件的问题,特意写了一下重采样的程序。原理就是把采样点转换到时间刻度之后再进行插值,经过测试,是没有问题的。#!/usr/b