python使用PIL和matplotlib获取图片像素点并合并解析

时间:2021-05-22

python 版本 3.x

首先安装 PIL

由于PIL仅支持到Python 2.7,加上年久失修,于是一群志愿者在PIL的基础上创建了兼容的版本,名字叫Pillow,支持最新Python 3.x,又加入了许多新特性,因此,我们可以直接安装使用Pillow。

所以 安装:

pip install pillow

获取像素点

import numpy as npfrom PIL import Imageimg = Image.open("./b.png").convert('RGBA')a_img = np.asarray(img)

获取的图片像素为 一个二维数组,相当于是二维左边系, x ,y 然后里面存了一个元组 值分别为 r g b a

分别计算改变了像素值之后,就需要将数据写入到图片了,这个时候就需要 matplotlib

import matplotlib.pyplot as plt plt.figure("beauty") # 开启图层,名称为 beautyplt.imshow(a_img) # 二维数组的数据plt.axis('off')#plt.show()plt.savefig("./result.png")

下面给出一个完整的 demo

需要将两张图片合并计算,并输出结果:

将上面两个图片合并

from PIL import Imageimport numpy as npimport matplotlib.pyplot as pltdef modeSuperposition(basePixel,mixPixel,alpha): basePixel = int(basePixel) mixPixel = int(mixPixel); res=0 if basePixel <= 128 : res = int(mixPixel) * int(basePixel) / 128; else: res = 255 - (255 - mixPixel)*(255 - basePixel) / 128; a = alpha / 255; if a > 1: a = 1 res = (1-a)*basePixel + a*res t = int(res)&-256 if t == 0: return int(res) if res > 255: return 255 return 0 def mergePoint(x,y): p1 = img1[x][y] p2 = img2[x][y] p1[1] = modeSuperposition(p1[0],p2[0],p2[3]) p1[2] = modeSuperposition(p1[1],p2[1],p2[3]) p1[3] = modeSuperposition(p1[2],p2[2],p2[3]) imgA = Image.open('./b.png')img1=np.array(imgA.convert('RGBA')) #打开图像并转化为数字矩img2=np.array(Image.open("./light.png").convert('RGBA')) i = len(img1);j = len(img1[0]); for k in range(0,len(img2)): for n in range(0,len(img2[0])): if k < i and n < j: mergePoint(k,n) #img = Image.new("RGBA",imgA.size)###创建一个5*5的图片plt.figure("beauty") # 开启图层,名称为 beautyplt.imshow(img1) # 二维数组的数据plt.axis('off')#plt.show()plt.savefig("./result.png")

结果如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章