Python 爬虫多线程详解及实例代码

时间:2021-05-22

python是支持多线程的,主要是通过thread和threading这两个模块来实现的。thread模块是比较底层的模块,threading模块是对thread做了一些包装的,可以更加方便的使用。

虽然python的多线程受GIL限制,并不是真正的多线程,但是对于I/O密集型计算还是能明显提高效率,比如说爬虫。
下面用一个实例来验证多线程的效率。代码只涉及页面获取,并没有解析出来。

# -*-coding:utf-8 -*-import urllib2, timeimport threadingclass MyThread(threading.Thread): def __init__(self, func, args): threading.Thread.__init__(self) self.args = args self.func = func def run(self): apply(self.func, self.args)def open_url(url): request = urllib2.Request(url) html = urllib2.urlopen(request).read() print len(html) return htmlif __name__ == '__main__': # 构造url列表 urlList = [] for p in range(1, 10): urlList.append('http://s.wanfangdata.com.cn/Paper.aspx?q=%E5%8C%BB%E5%AD%A6&p=' + str(p)) # 一般方式 n_start = time.time() for each in urlList: open_url(each) n_end = time.time() print 'the normal way take %s s' % (n_end-n_start)# 多线程 t_start = time.time() threadList = [MyThread(open_url, (url,)) for url in urlList] for t in threadList: t.setDaemon(True) t.start() for i in threadList: i.join() t_end = time.time() print 'the thread way take %s s' % (t_end-t_start)

分别用两种方式获取10个访问速度比较慢的网页,一般方式耗时50s,多线程耗时10s。
多线程代码解读:

# 创建线程类,继承Thread类class MyThread(threading.Thread): def __init__(self, func, args): threading.Thread.__init__(self) # 调用父类的构造函数 self.args = args self.func = func def run(self): # 线程活动方法 apply(self.func, self.args)threadList = [MyThread(open_url, (url,)) for url in urlList] # 调用线程类创建新线程,返回线程列表 for t in threadList: t.setDaemon(True) # 设置守护线程,父线程会等待子线程执行完后再退出 t.start() # 线程开启 for i in threadList: i.join() # 等待线程终止,等子线程执行完后再执行父线程

以上就是本文的全部内容,希望对大家的学习有所帮助。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章