时间:2021-05-22
df.dropna()函数用于删除dataframe数据中的缺失数据,即 删除NaN数据.
官方函数说明:
DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False) Remove missing values. See the User Guide for more on which values are considered missing, and how to work with missing data.Returns DataFrame DataFrame with NA entries dropped from it.参数说明:
Parameters 说明 axis 0为行 1为列,default 0,数据删除维度 how {‘any', ‘all'}, default ‘any',any:删除带有nan的行;all:删除全为nan的行 thresh int,保留至少 int 个非nan行 subset list,在特定列缺失值处理 inplace bool,是否修改源文件测试:
>>>df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'], "toy": [np.nan, 'Batmobile', 'Bullwhip'], "born": [pd.NaT, pd.Timestamp("1940-04-25"), pd.NaT]})>>>df name toy born0 Alfred NaN NaT1 Batman Batmobile 1940-04-252 Catwoman Bullwhip NaT删除至少缺少一个元素的行:
>>>df.dropna() name toy born1 Batman Batmobile 1940-04-25删除至少缺少一个元素的列:
>>>df.dropna(axis=1) name0 Alfred1 Batman2 Catwoman删除所有元素丢失的行:
>>>df.dropna(how='all') name toy born0 Alfred NaN NaT1 Batman Batmobile 1940-04-252 Catwoman Bullwhip NaT只保留至少2个非NA值的行:
>>>df.dropna(thresh=2) name toy born1 Batman Batmobile 1940-04-252 Catwoman Bullwhip NaT从特定列中查找缺少的值:
>>>df.dropna(subset=['name', 'born']) name toy born1 Batman Batmobile 1940-04-25修改原数据:
>>>df.dropna(inplace=True)>>>df name toy born1 Batman Batmobile 1940-04-25以上。
补充:Pandas 之Dropna滤除缺失数据
约定:
import pandas as pdimport numpy as npfrom numpy import nan as NaN滤除缺失数据
pandas的设计目标之一就是使得处理缺失数据的任务更加轻松些。pandas使用NaN作为缺失数据的标记。
使用dropna使得滤除缺失数据更加得心应手。
通过**dropna()**滤除缺失数据:
se1=pd.Series([4,NaN,8,NaN,5])print(se1)se1.dropna()代码结果:
0 4.01 NaN2 8.03 NaN4 5.0dtype: float640 4.02 8.04 5.0dtype: float64通过布尔序列也能滤除:
se1[se1.notnull()]代码结果:
0 4.02 8.04 5.0dtype: float64处理DataFrame对象比较复杂,因为你可能需要丢弃所有的NaN或部分NaN。
df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]])df1代码结果:
0 1 2 0 1.0 2.0 3.0 1 NaN NaN 2.0 2 NaN NaN NaN 3 8.0 8.0 NaN默认滤除所有包含NaN:
df1.dropna()代码结果:
0 1 2 0 1.0 2.0 3.0传入**how=‘all'**滤除全为NaN的行:
df1.dropna(how='all')代码结果:
0 1 2 0 1.0 2.0 3.0 1 NaN NaN 2.0 3 8.0 8.0 NaN传入axis=1滤除列:
df1[3]=NaNdf1代码结果:
0 1 2 3 0 1.0 2.0 3.0 NaN 1 NaN NaN 2.0 NaN 2 NaN NaN NaN NaN 3 8.0 8.0 NaN NaN df1.dropna(axis=1,how="all")代码结果:
0 1 2 0 1.0 2.0 3.0 1 NaN NaN 2.0 2 NaN NaN NaN 3 8.0 8.0 NaN传入thresh=n保留至少有n个非NaN数据的行:
df1.dropna(thresh=1)代码结果:
0 1 2 3 0 1.0 2.0 3.0 NaN 1 NaN NaN 2.0 NaN 3 8.0 8.0 NaN NaN df1.dropna(thresh=3)代码结果:
0 1 2 3 0 1.0 2.0 3.0 NaN以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
处理方式:存在缺失值nan,并且是np.nan:删除存在缺失值的:dropna(axis='rows')替换缺失值:fillna(df[].mean(),inp
Pandas使用这些函数处理缺失值:isnull和notnull:检测是否是空值,可用于df和seriesdropna:丢弃、删除缺失值axis:删除行还是列,
如果存在以下DataFrame年龄性别手机号02男NaN13女NaN24NaNNaN删除NaN所在的行:删除表中全部为NaN的行df.dropna(axis=0
1.摘要dropna()方法,能够找到DataFrame类型数据的空值(缺失值),将空值所在的行/列删除后,将新的DataFrame作为返回值返回。2.函数详解
在实际应用中对于数据进行分析的时候,经常能看见缺失值,下面来介绍一下如何利用pandas来处理缺失值。常见的缺失值处理方式有,过滤、填充。一、缺失值的判断pan