时间:2021-05-22
一、简介
是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题。迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止
二、步骤
(1) 找出“最便宜”的节点,即可在最短时间内到达的节点。
(2) 更新该节点的邻居的开销,其含义将稍后介绍。
(3) 重复这个过程,直到对图中的每个节点都这样做了。
(4) 计算最终路径。
三、图解
上图中包括5个节点,箭头表示方向,线上的数字表示消耗时间。
首先根据上图做出一个初始表(父节点代表从哪个节点到达该节点):
然后从“起点”开始,根据图中的信息更新一下表,由于从“起点”不能直接到达“终点”节点,所以耗时为∞(无穷大):
有了这个表我们可以根据算法的步骤往下进行了。
第一步:找出“最便宜”的节点,这里是节点B:
第二步:更新该节点的邻居的开销,根据图从B出发可以到达A和“终点”节点,B目前的消耗2+B到A的消耗3=5,5小于原来A的消耗6,所以更新节点A相关的行:
同理,B目前消耗2+B到End的消耗5=7,小于∞,更新“终点”节点行:
B节点关联的节点已经更新完成,所以B节点不在后面的更新范围之内了:
找到下一个消耗最小的节点,那就是A节点:
根据A节点的消耗更新关联节点,只有End节点行被更新了:
这时候A节点也不在更新节点范围之内了:
最终表的数据如下:
根据最终表,从“起点”到“终点”的最少消耗是6,路径是起点->B->A->终点.
四、代码实现
# -*-coding:utf-8-*-# 用散列表实现图的关系# 创建节点的开销表,开销是指从"起点"到该节点的权重graph = {}graph["start"] = {}graph["start"]["a"] = 6graph["start"]["b"] = 2graph["a"] = {}graph["a"]["end"] = 1graph["b"] = {}graph["b"]["a"] = 3graph["b"]["end"] = 5graph["end"] = {}# 无穷大infinity = float("inf")costs = {}costs["a"] = 6costs["b"] = 2costs["end"] = infinity# 父节点散列表parents = {}parents["a"] = "start"parents["b"] = "start"parents["end"] = None# 已经处理过的节点,需要记录processed = []# 找到开销最小的节点def find_lowest_cost_node(costs): # 初始化数据 lowest_cost = infinity lowest_cost_node = None # 遍历所有节点 for node in costs: # 该节点没有被处理 if not node in processed: # 如果当前节点的开销比已经存在的开销小,则更新该节点为开销最小的节点 if costs[node] < lowest_cost: lowest_cost = costs[node] lowest_cost_node = node return lowest_cost_node# 找到最短路径def find_shortest_path(): node = "end" shortest_path = ["end"] while parents[node] != "start": shortest_path.append(parents[node]) node = parents[node] shortest_path.append("start") return shortest_path# 寻找加权的最短路径def dijkstra(): # 查询到目前开销最小的节点 node = find_lowest_cost_node(costs) # 只要有开销最小的节点就循环(这个while循环在所有节点都被处理过后结束) while node is not None: # 获取该节点当前开销 cost = costs[node] # 获取该节点相邻的节点 neighbors = graph[node] # 遍历当前节点的所有邻居 for n in neighbors.keys(): # 计算经过当前节点到达相邻结点的开销,即当前节点的开销加上当前节点到相邻节点的开销 new_cost = cost + neighbors[n] # 如果经当前节点前往该邻居更近,就更新该邻居的开销 if new_cost < costs[n]: costs[n] = new_cost #同时将该邻居的父节点设置为当前节点 parents[n] = node # 将当前节点标记为处理过 processed.append(node) # 找出接下来要处理的节点,并循环 node = find_lowest_cost_node(costs) # 循环完毕说明所有节点都已经处理完毕 shortest_path = find_shortest_path() shortest_path.reverse() print(shortest_path)# 测试dijkstra()以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
Dijkstra算法:又称迪杰斯特拉算法,迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短
Dijkstra算法迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有向
算法介绍迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径
最短路径问题(python实现)解决最短路径问题:(如下三种算法)(1)迪杰斯特拉算法(Dijkstra算法)(2)弗洛伊德算法(Floyd算法)(3)SPFA
图搜索之基于Python的迪杰斯特拉算法和弗洛伊德算法,供大家参考,具体内容如下Djstela算法#encoding=UTF-8MAX=9'''Createdo