时间:2021-05-22
一、前言
最近做web网站的测试,遇到很多需要批量造数据的功能;比如某个页面展示数据条数需要达到10000条进行测试,此时手动构造数据肯定是不可能的,此时只能通过python脚本进行自动构造数据;本次构造数据主要涉及到在某个表里面批量添加数据、在关联的几个表中同步批量添加数据、批量查询某个表中符合条件的数据、批量更新某个表中符合条件的数据等。
二、数据添加
即批量添加数据到某个表中。
insert_data.py
import pymysqlimport randomimport timefrom get_userinfo import get_userinfofrom get_info import get_infofrom get_tags import get_tagsfrom get_tuser_id import get_utagclass DatabaseAccess(): def __init__(self): self.__db_host = "xxxxx" self.__db_port = 3307 self.__db_user = "root" self.__db_password = "123456" self.__db_database = "xxxxxx" # 连接数据库 def isConnectionOpen(self): self.__db = pymysql.connect( host=self.__db_host, port=self.__db_port, user=self.__db_user, password=self.__db_password, database=self.__db_database, charset='utf8' ) # 插入数据 def linesinsert(self,n,user_id,tags_id,created_at): self.isConnectionOpen() # 创建游标 global cursor conn = self.__db.cursor() try: sql1 = ''' INSERT INTO `codeforge_new`.`cf_user_tag`(`id`, `user_id`, `tag_id`, `created_at`, `updated_at`) VALUES ({}, {}, {}, '{}', '{}'); '''.format(n,user_id,tags_id,created_at,created_at) # 执行SQL conn.execute(sql1,) except Exception as e: print(e) finally: # 关闭游标 conn.close() self.__db.commit() self.__db.close() def get_data(self): # 生成对应数据 1000条 for i in range(0,1001): created_at = time.strftime('%Y-%m-%d %H:%M:%S',time.localtime()) # print(create_at) # 用户id tuserids = [] tuserid_list = get_utag() for tuserid in tuserid_list: tuserids.append(tuserid[0]) # print(tuserids) userid_list = get_userinfo() user_id = random.choice(userid_list)[0] if user_id not in tuserids: user_id=user_id # 标签id tagsid_list = get_tags() tags_id = random.choice(tagsid_list)[0] self.linesinsert(i,user_id,tags_id,created_at)if __name__ == "__main__": # 实例化对象 db=DatabaseAccess() db.get_data()二、数据批量查询
select_data.py
import pymysqlimport pandas as pdimport numpy as npdef get_tags(): # 连接数据库,地址,端口,用户名,密码,数据库名称,数据格式 conn = pymysql.connect(host='xxx.xxx.xxx.xxx',port=3307,user='root',passwd='123456',db='xxxx',charset='utf8') cur = conn.cursor() # 表cf_users中获取所有用户id sql = 'select id from cf_tags where id between 204 and 298' # 将user_id列转成列表输出 df = pd.read_sql(sql,con=conn) # 先使用array()将DataFrame转换一下 df1 = np.array(df) # 再将转换后的数据用tolist()转成列表 df2 = df1.tolist() # cur.execute(sql) # data = cur.fetchone() # print(df) # print(df1) # print(df2) return df2 conn.close()三、批量更新数据
select_data.py
import pymysqlimport pandas as pdimport numpy as npdef get_tags(): # 连接数据库,地址,端口,用户名,密码,数据库名称,数据格式 conn = pymysql.connect(host='xxx.xxx.xxx.xxx',port=3307,user='root',passwd='123456',db='xxxx',charset='utf8') cur = conn.cursor() # 表cf_users中获取所有用户id sql = 'select id from cf_tags where id between 204 and 298' # 将user_id列转成列表输出 df = pd.read_sql(sql,con=conn) # 先使用array()将DataFrame转换一下 df1 = np.array(df) # 再将转换后的数据用tolist()转成列表 df2 = df1.tolist() # cur.execute(sql) # data = cur.fetchone() # print(df) # print(df1) # print(df2) return df2 conn.close()以上就是python 实现数据库中数据添加、查询与更新的示例代码的详细内容,更多关于python 数据库添加、查询与更新的资料请关注其它相关文章!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
当我们想更新一张动态表的时候(即:表中的数据不断的添加),也许我们会用数据库代理,通过写作业,然后让他定时查询动态表中最新添加的数据,然后更新数据。这样时能实现
如题,本次是要实现点击超链接实现执行js代码,并确认是否删除数据库数据,采用php。首先链接数据库,查询数据库数据:复制代码代码如下:prepare($quer
基于Python2.7的版本环境,Python实现的数据库跨服务器(跨库)迁移,每以5000条一查询一提交,代码中可以自行更改每次查询提交数目.#-*-codi
Python的mysql数据库的更新Python的mysql数据库的更新操作,在实际应用项目中会用到更新数据库,更新过程中可能会出现数据丢失或者数据错乱等系统性
一:脚本需求利用Python3查询网站权重并自动存储在本地数据库(Mysql数据库)中,同时导出一份网站权重查询结果的EXCEL表格数据库类型:MySql数据库