时间:2021-05-22
数据描述
每条数据项储存在列表中,最后一列储存结果
多条数据项形成数据集
data=[[d1,d2,d3...dn,result], [d1,d2,d3...dn,result], . . [d1,d2,d3...dn,result]]决策树数据结构
class DecisionNode: '''决策树节点 ''' def __init__(self,col=-1,value=None,results=None,tb=None,fb=None): '''初始化决策树节点 args: col -- 按数据集的col列划分数据集 value -- 以value作为划分col列的参照 result -- 只有叶子节点有,代表最终划分出的子数据集结果统计信息。{‘结果':结果出现次数} rb,fb -- 代表左右子树 ''' self.col=col self.value=value self.results=results self.tb=tb self.fb=fb决策树分类的最终结果是将数据项划分出了若干子集,其中每个子集的结果都一样,所以这里采用{‘结果':结果出现次数}的方式表达每个子集
def pideset(rows,column,value): '''依据数据集rows的column列的值,判断其与参考值value的关系对数据集进行拆分 返回两个数据集 ''' split_function=None #value是数值类型 if isinstance(value,int) or isinstance(value,float): #定义lambda函数当row[column]>=value时返回true split_function=lambda row:row[column]>=value #value是字符类型 else: #定义lambda函数当row[column]==value时返回true split_function=lambda row:row[column]==value #将数据集拆分成两个 set1=[row for row in rows if split_function(row)] set2=[row for row in rows if not split_function(row)] #返回两个数据集 return (set1,set2) def uniquecounts(rows): '''计算数据集rows中有几种最终结果,计算结果出现次数,返回一个字典 ''' results={} for row in rows: r=row[len(row)-1] if r not in results: results[r]=0 results[r]+=1 return results def giniimpurity(rows): '''返回rows数据集的基尼不纯度 ''' total=len(rows) counts=uniquecounts(rows) imp=0 for k1 in counts: p1=float(counts[k1])/total for k2 in counts: if k1==k2: continue p2=float(counts[k2])/total imp+=p1*p2 return imp def entropy(rows): '''返回rows数据集的熵 ''' from math import log log2=lambda x:log(x)/log(2) results=uniquecounts(rows) ent=0.0 for r in results.keys(): p=float(results[r])/len(rows) ent=ent-p*log2(p) return ent def build_tree(rows,scoref=entropy): '''构造决策树 ''' if len(rows)==0: return DecisionNode() current_score=scoref(rows) # 最佳信息增益 best_gain=0.0 # best_criteria=None #最佳划分 best_sets=None column_count=len(rows[0])-1 #遍历数据集的列,确定分割顺序 for col in range(0,column_count): column_values={} # 构造字典 for row in rows: column_values[row[col]]=1 for value in column_values.keys(): (set1,set2)=pideset(rows,col,value) p=float(len(set1))/len(rows) # 计算信息增益 gain=current_score-p*scoref(set1)-(1-p)*scoref(set2) if gain>best_gain and len(set1)>0 and len(set2)>0: best_gain=gain best_criteria=(col,value) best_sets=(set1,set2) # 如果划分的两个数据集熵小于原数据集,进一步划分它们 if best_gain>0: trueBranch=build_tree(best_sets[0]) falseBranch=build_tree(best_sets[1]) return DecisionNode(col=best_criteria[0],value=best_criteria[1], tb=trueBranch,fb=falseBranch) # 如果划分的两个数据集熵不小于原数据集,停止划分 else: return DecisionNode(results=uniquecounts(rows)) def print_tree(tree,indent=''): if tree.results!=None: print(str(tree.results)) else: print(str(tree.col)+':'+str(tree.value)+'? ') print(indent+'T->',end='') print_tree(tree.tb,indent+' ') print(indent+'F->',end='') print_tree(tree.fb,indent+' ') def getwidth(tree): if tree.tb==None and tree.fb==None: return 1 return getwidth(tree.tb)+getwidth(tree.fb) def getdepth(tree): if tree.tb==None and tree.fb==None: return 0 return max(getdepth(tree.tb),getdepth(tree.fb))+1 def drawtree(tree,jpeg='tree.jpg'): w=getwidth(tree)*100 h=getdepth(tree)*100+120 img=Image.new('RGB',(w,h),(255,255,255)) draw=ImageDraw.Draw(img) drawnode(draw,tree,w/2,20) img.save(jpeg,'JPEG') def drawnode(draw,tree,x,y): if tree.results==None: # Get the width of each branch w1=getwidth(tree.fb)*100 w2=getwidth(tree.tb)*100 # Determine the total space required by this node left=x-(w1+w2)/2 right=x+(w1+w2)/2 # Draw the condition string draw.text((x-20,y-10),str(tree.col)+':'+str(tree.value),(0,0,0)) # Draw links to the branches draw.line((x,y,left+w1/2,y+100),fill=(255,0,0)) draw.line((x,y,right-w2/2,y+100),fill=(255,0,0)) # Draw the branch nodes drawnode(draw,tree.fb,left+w1/2,y+100) drawnode(draw,tree.tb,right-w2/2,y+100) else: txt=' \n'.join(['%s:%d'%v for v in tree.results.items()]) draw.text((x-20,y),txt,(0,0,0))对测试数据进行分类(附带处理缺失数据)
def mdclassify(observation,tree): '''对缺失数据进行分类 args: observation -- 发生信息缺失的数据项 tree -- 训练完成的决策树 返回代表该分类的结果字典 ''' # 判断数据是否到达叶节点 if tree.results!=None: # 已经到达叶节点,返回结果result return tree.results else: # 对数据项的col列进行分析 v=observation[tree.col] # 若col列数据缺失 if v==None: #对tree的左右子树分别使用mdclassify,tr是左子树得到的结果字典,fr是右子树得到的结果字典 tr,fr=mdclassify(observation,tree.tb),mdclassify(observation,tree.fb) # 分别以结果占总数比例计算得到左右子树的权重 tcount=sum(tr.values()) fcount=sum(fr.values()) tw=float(tcount)/(tcount+fcount) fw=float(fcount)/(tcount+fcount) result={} # 计算左右子树的加权平均 for k,v in tr.items(): result[k]=v*tw for k,v in fr.items(): # fr的结果k有可能并不在tr中,在result中初始化k if k not in result: result[k]=0 # fr的结果累加到result中 result[k]+=v*fw return result # col列没有缺失,继续沿决策树分类 else: if isinstance(v,int) or isinstance(v,float): if v>=tree.value: branch=tree.tb else: branch=tree.fb else: if v==tree.value: branch=tree.tb else: branch=tree.fb return mdclassify(observation,branch) tree=build_tree(my_data)print(mdclassify(['google',None,'yes',None],tree))print(mdclassify(['google','France',None,None],tree))决策树剪枝
def prune(tree,mingain): '''对决策树进行剪枝 args: tree -- 决策树 mingain -- 最小信息增益 返回 ''' # 修剪非叶节点 if tree.tb.results==None: prune(tree.tb,mingain) if tree.fb.results==None: prune(tree.fb,mingain) #合并两个叶子节点 if tree.tb.results!=None and tree.fb.results!=None: tb,fb=[],[] for v,c in tree.tb.results.items(): tb+=[[v]]*c for v,c in tree.fb.results.items(): fb+=[[v]]*c #计算熵减少情况 delta=entropy(tb+fb)-(entropy(tb)+entropy(fb)/2) #熵的增加量小于mingain,可以合并分支 if delta<mingain: tree.tb,tree.fb=None,None tree.results=uniquecounts(tb+fb)声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例讲述了Python机器学习算法库scikit-learn学习之决策树实现方法。分享给大家供大家参考,具体如下:决策树决策树(DTs)是一种用于分类和回归
本文实例讲述了决策树剪枝算法的python实现方法。分享给大家供大家参考,具体如下:决策树是一种依托决策而建立起来的一种树。在机器学习中,决策树是一种预测模型,
本文实例讲述了决策树的python实现方法。分享给大家供大家参考。具体实现方法如下:决策树算法优缺点:优点:计算复杂度不高,输出结果易于理解,对中间值缺失不敏感
ID3决策树是以信息增益作为决策标准的一种贪心决策树算法#-*-coding:utf-8-*-fromnumpyimport*importmathimportc
本文实例讲述了基于Python实现的ID3决策树功能。分享给大家供大家参考,具体如下:ID3算法是决策树的一种,它是基于奥卡姆剃刀原理的,即用尽量用较少的东西做