Python 执行矩阵与线性代数运算

时间:2021-05-22

问题

你需要执行矩阵和线性代数运算,比如矩阵乘法、寻找行列式、求解线性方程组等等。

解决方案

NumPy 库有一个矩阵对象可以用来解决这个问题。
矩阵类似于3.9小节中数组对象,但是遵循线性代数的计算规则。下面的一个例子展示了矩阵的一些基本特性:

>>> import numpy as np>>> m = np.matrix([[1,-2,3],[0,4,5],[7,8,-9]])>>> mmatrix([[ 1, -2, 3], [ 0, 4, 5], [ 7, 8, -9]])>>> # Return transpose>>> m.Tmatrix([[ 1, 0, 7], [-2, 4, 8], [ 3, 5, -9]])>>> # Return inverse>>> m.Imatrix([[ 0.33043478, -0.02608696, 0.09565217], [-0.15217391, 0.13043478, 0.02173913], [ 0.12173913, 0.09565217, -0.0173913 ]])>>> # Create a vector and multiply>>> v = np.matrix([[2],[3],[4]])>>> vmatrix([[2], [3], [4]])>>> m * vmatrix([[ 8], [32], [ 2]])>>>

可以在 numpy.linalg 子包中找到更多的操作函数,比如:

>>> import numpy.linalg>>> # Determinant>>> numpy.linalg.det(m)-229.99999999999983>>> # Eigenvalues>>> numpy.linalg.eigvals(m)array([-13.11474312, 2.75956154, 6.35518158])>>> # Solve for x in mx = v>>> x = numpy.linalg.solve(m, v)>>> xmatrix([[ 0.96521739], [ 0.17391304], [ 0.46086957]])>>> m * xmatrix([[ 2.], [ 3.], [ 4.]])>>> vmatrix([[2], [3], [4]])>>>

讨论

很显然线性代数是个非常大的主题,已经超出了本书能讨论的范围。 但是,如果你需要操作数组和向量的话, NumPy 是一个不错的入口点。 可以访问 NumPy 官网 http://www.numpy.org 获取更多信息。

以上就是Python 执行矩阵与线性代数运算的详细内容,更多关于Python 矩阵与线性代数运算的资料请关注其它相关文章!

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章