时间:2021-05-23
1. 同线性代数中矩阵乘法的定义: np.dot()
np.dot(A, B):对于二维矩阵,计算真正意义上的矩阵乘积,同线性代数中矩阵乘法的定义。对于一维矩阵,计算两者的内积。见如下Python代码:
import numpy as np# 2-D array: 2 x 3two_dim_matrix_one = np.array([[1, 2, 3], [4, 5, 6]])# 2-D array: 3 x 2two_dim_matrix_two = np.array([[1, 2], [3, 4], [5, 6]])two_multi_res = np.dot(two_dim_matrix_one, two_dim_matrix_two)print('two_multi_res: %s' %(two_multi_res))# 1-D arrayone_dim_vec_one = np.array([1, 2, 3])one_dim_vec_two = np.array([4, 5, 6])one_result_res = np.dot(one_dim_vec_one, one_dim_vec_two)print('one_result_res: %s' %(one_result_res))结果如下:
two_multi_res: [[22 28] [49 64]]one_result_res: 322. 对应元素相乘 element-wise product: np.multiply(), 或 *
在Python中,实现对应元素相乘,有2种方式,一个是np.multiply(),另外一个是*。见如下Python代码:
import numpy as np# 2-D array: 2 x 3two_dim_matrix_one = np.array([[1, 2, 3], [4, 5, 6]])another_two_dim_matrix_one = np.array([[7, 8, 9], [4, 7, 1]])# 对应元素相乘 element-wise productelement_wise = two_dim_matrix_one * another_two_dim_matrix_oneprint('element wise product: %s' %(element_wise))# 对应元素相乘 element-wise productelement_wise_2 = np.multiply(two_dim_matrix_one, another_two_dim_matrix_one)print('element wise product: %s' % (element_wise_2))结果如下:
element wise product: [[ 7 16 27] [16 35 6]]element wise product: [[ 7 16 27] [16 35 6]]以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
1.矩阵相乘矩阵相乘应满足的条件:(1)矩阵A的列数必须等于矩阵B的行数,矩阵A与矩阵B才能相乘;(2)矩阵C的行数等于矩阵A的行数,矩阵C的列数等于矩阵B的列
动态规划法题目描述:给定n个矩阵{A1,A2....An},其中Ai与Ai+1是可以相乘的,判断这n个矩阵通过加括号的方式相乘,使得相乘的次数最少!以矩阵链AB
一、矩阵乘法定义矩阵Ax×y和矩阵Bu×v相乘的前提条件是y==u,并且相乘后得到的矩阵为Cx×v(即A的行和B的列构成了矩阵C的行列);二、矩阵类封装我们用C
python进行矩阵运算的方法:1、矩阵相乘>>>a1=mat([1,2]);>>>a2=mat([[1],[2]]);>>>a3=a1*a2#1*2的矩阵乘以
SVD是矩阵分解常用的方法,其原理为:矩阵M可以写成矩阵A、B与C相乘得到,而B可以与A或者C合并,就变成了两个元素M1与M2的矩阵相乘可以得到M。矩阵分解推荐