python 实现方阵的对角线遍历示例

时间:2021-05-22

任务描述

对一个方阵矩阵,实现平行于主对角线方向的对角线元素遍历。

从矩阵索引入手:

[[ 1 2 3 4 5] [ 6 7 8 9 10] [11 12 13 14 15] [16 17 18 19 20] [21 22 23 24 25]]

上三角的索引遍历:

0 01 12 23 34 40 11 22 33 40 21 32 40 31 40 4

下三角的索引遍历:

1 02 13 24 32 03 14 23 04 14 0

代码

import numpy as npA = np.arange(25)+1A = np.mat(A.reshape([5, 5]))print(A)"""[[ 1 2 3 4 5] [ 6 7 8 9 10] [11 12 13 14 15] [16 17 18 19 20] [21 22 23 24 25]]"""Num_element = A.shape[0]c = int((Num_element-1)/2)# print(c)R = np.zeros_like(A)# print(R)for j in range(Num_element): print() i = 0 # print(i, j) while np.max([i, j])<Num_element: print(i, j) if np.abs(i-j)%2==0: R[i, j] = A[c-int((j-i)/2), c+int((j-i)/2)] else: R[i, j] = (A[c-int((j-i-1)/2), c+int((j-i+1)/2)]+A[c-int((j-i+1)/2), c+int((j-i-1)/2)])/2 i=i+1 j=j+1# print(R)for k in range(1, Num_element): print() i = 0 # print(i, j) while np.max([k, i])<Num_element: print(k, i) if np.abs(k-i)%2==0: R[k, i] = A[c-int((i-k)/2), c+int((i-k)/2)] else: R[k, i] = (A[c-int((i-k-1)/2), c+int((i-k+1)/2)]+A[c-int((i-k+1)/2), c+int((i-k-1)/2)])/2 k=k+1 i=i+1print(R)

上述代码中对于每条对角线的所有元素执行相同的赋值操作。

考虑将其中重复的部分封装成函数:

def diag_opreation(k, i, Num_element, R, A): c = int((Num_element-1)/2) while np.max([k, i])<Num_element: print(k, i) if np.abs(k-i)%2==0: R[k, i] = A[c-int((i-k)/2), c+int((i-k)/2)] else: R[k, i] = (A[c-int((i-k-1)/2), c+int((i-k+1)/2)]+A[c-int((i-k+1)/2), c+int((i-k-1)/2)])/2 k=k+1 i=i+1 return R

则代码变为:

for j in range(Num_element): print() i = 0 # print(i, j) R = diag_opreation(i, j, Num_element, R, A)# print(R)for k in range(1, Num_element): print() i = 0 # print(i, j) R = diag_opreation(k, i, Num_element, R, A)print(R)

输出结果为:

[[13 11 9 7 5] [15 13 11 9 7] [17 15 13 11 9] [19 17 15 13 11] [21 19 17 15 13]]

以上这篇python 实现方阵的对角线遍历示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章