浅谈pytorch和Numpy的区别以及相互转换方法

时间:2021-05-22

如下所示:

# -*- coding: utf-8 -*-# @Time : 2018/1/17 16:37# @Author : Zhiwei Zhong# @Site : # @File : Numpy_Pytorch.py# @Software: PyCharmimport torchimport numpy as npnp_data = np.arange(6).reshape((2, 3))# numpy 转为 pytorch格式torch_data = torch.from_numpy(np_data)print( '\n numpy', np_data, '\n torch', torch_data,)''' numpy [[0 1 2] [3 4 5]] torch 0 1 2 3 4 5[torch.LongTensor of size 2x3]'''# torch 转为numpytensor2array = torch_data.numpy()print(tensor2array)"""[[0 1 2] [3 4 5]]"""# 运算符# abs 、 add 、和numpy类似data = [[1, 2], [3, 4]]tensor = torch.FloatTensor(data) # 转为32位浮点数,torch接受的都是Tensor的形式,所以运算前先转化为Tensorprint( '\n numpy', np.matmul(data, data), '\n torch', torch.mm(tensor, tensor) # torch.dot()是点乘)''' numpy [[ 7 10] [15 22]] torch 7 10 15 22[torch.FloatTensor of size 2x2]'''

以上这篇浅谈pytorch和Numpy的区别以及相互转换方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章