时间:2021-05-22
如下所示:
以上这篇python的scikit-learn将特征转成one-hot特征的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
one-hot编码的作用使用one-hot编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点将离散特征通过one-hot编码映射到
scikit-learn是python的第三方机器学习库,里面集成了大量机器学习的常用方法。例如:贝叶斯,svm,knn等。scikit-learn的官网:ht
离散特征的编码分为两种情况:1、离散特征的取值之间没有大小的意义,比如color:[red,blue],那么就使用one-hot编码2、离散特征的取值有大小的意
离散特征的编码分为两种情况:1、离散特征的取值之间没有大小的意义,比如color:[red,blue],那么就使用one-hot编码2、离散特征的取值有大小的意
step:1.将标签转换为one-hot形式。2.将每一个one-hot标签中的1改为预设样本权重的值即可在Pytorch中使用样本权重。eg:对于单个样本:l