时间:2021-05-22
前言
pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包类似于 Numpy 的核心是 ndarray,pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的 。Series 和 DataFrame 分别对应于一维的序列和二维的表结构。pandas 约定俗成的导入方法如下:
from pandas import Series,DataFrameimport pandas as pd1.1. Pandas分析步骤
1、载入日志数据
2、载入area_ip数据
3、将 real_ip 请求数 进行 COUNT。类似如下SQL:
SELECT inet_aton(l.real_ip), count(*), a.addrFROM log AS lINNER JOIN area_ip AS a ON a.start_ip_num <= inet_aton(l.real_ip) AND a.end_ip_num >= inet_aton(l.real_ip)GROUP BY real_ipORDER BY count(*)LIMIT 0, 100;1.2. 代码
cat pd_ng_log_stat.py#!/usr/bin/env python#-*- coding: utf-8 -*- from ng_line_parser import NgLineParser import pandas as pdimport socketimport struct class PDNgLogStat(object): def __init__(self): self.ng_line_parser = NgLineParser() def _log_line_iter(self, pathes): """解析文件中的每一行并生成一个迭代器""" for path in pathes: with open(path, 'r') as f: for index, line in enumerate(f): self.ng_line_parser.parse(line) yield self.ng_line_parser.to_dict() def _ip2num(self, ip): """用于IP转化为数字""" ip_num = -1 try: # 将IP转化成INT/LONG 数字 ip_num = socket.ntohl(struct.unpack("I",socket.inet_aton(str(ip)))[0]) except: pass finally: return ip_num def _get_addr_by_ip(self, ip): """通过给的IP获得地址""" ip_num = self._ip2num(ip) try: addr_df = self.ip_addr_df[(self.ip_addr_df.ip_start_num <= ip_num) & (ip_num <= self.ip_addr_df.ip_end_num)] addr = addr_df.at[addr_df.index.tolist()[0], 'addr'] return addr except: return None def load_data(self, path): """通过给的文件路径加载数据生成 DataFrame""" self.df = pd.DataFrame(self._log_line_iter(path)) def uv_real_ip(self, top = 100): """统计cdn ip量""" group_by_cols = ['real_ip'] # 需要分组的列,只计算和显示该列 # 直接统计次数 url_req_grp = self.df[group_by_cols].groupby( self.df['real_ip']) return url_req_grp.agg(['count'])['real_ip'].nlargest(top, 'count') def uv_real_ip_addr(self, top = 100): """统计real ip 地址量""" cnt_df = self.uv_real_ip(top) # 添加 ip 地址 列 cnt_df.insert(len(cnt_df.columns), 'addr', cnt_df.index.map(self._get_addr_by_ip)) return cnt_df def load_ip_addr(self, path): """加载IP""" cols = ['id', 'ip_start_num', 'ip_end_num', 'ip_start', 'ip_end', 'addr', 'operator'] self.ip_addr_df = pd.read_csv(path, sep='\t', names=cols, index_col='id') return self.ip_addr_df def main(): file_pathes = ['.access.log'] pd_ng_log_stat = PDNgLogStat() pd_ng_log_stat.load_data(file_pathes) # 加载 ip 地址 area_ip_path = 'area_ip.csv' pd_ng_log_stat.load_ip_addr(area_ip_path) # 统计 用户真实 IP 访问量 和 地址 print pd_ng_log_stat.uv_real_ip_addr() if __name__ == '__main__': main()运行统计和输出结果
python pd_ng_log_stat.py count addrreal_ip 60.191.123.80 101013 浙江省杭州市- 32691 None218.30.118.79 22523 北京市......136.243.152.18 889 德国157.55.39.219 889 美国66.249.65.170 888 美国 [100 rows x 2 columns]总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作带来一定的帮助,如果有疑问大家可以留言交流。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
前言Pandas是Python当中重要的数据分析工具,利用Pandas进行数据分析时,确保使用正确的数据类型是非常重要的,否则可能会导致一些不可预知的错误发生。
pandas对于数据分析的人员来说都是必须熟悉的第三方库,pandas在科学计算上有很大的优势,特别是对于数据分析人员来说,相当的重要。python中有了Num
前言大家在使用Python进行数据分析时,经常要使用到的一个数据结构就是pandas的DataFrame,关于python中pandas.DataFrame的基
本文实例讲述了Python数据分析模块pandas用法。分享给大家供大家参考,具体如下:一介绍pandas(PythonDataAnalysisLibrary)
pandas.DataFrame选取特定行使用Python进行数据分析时,经常要使用到的一个数据结构就是pandas的DataFrame,如果我们想要像Exce