python音频处理用到的操作的示例代码

时间:2021-05-22

前言

本文主要记录python下音频常用的操作,以.wav格式文件为例。其实网上有很多现成的音频工具包,如果仅仅调用,工具包是更方便的。

更多pyton下的操作可以参考: 用python做科学计算

1、批量读取.wav文件名:

这里用到字符串路径:

1.通常意义字符串(str)
2.原始字符串,以大写R 或 小写r开始,r'',不对特殊字符进行转义
3.Unicode字符串,u'' basestring子类

如:

path = './file/n'path = r'.\file\n'path = '.\\file\\n'

三者等价,右划线\为转义字符,引号前加r表示原始字符串,而不转义(r:raw string).

常用获取帮助的方式:

>>> help(str)>>> dir(str)>>> help(str.replace)

2、读取.wav文件

wave.open 用法:

wave.open(file,mode)

mode可以是:

‘rb',读取文件;

‘wb',写入文件;

不支持同时读/写操作。

Wave_read.getparams用法:

f = wave.open(file,'rb')params = f.getparams()nchannels, sampwidth, framerate, nframes = params[:4]

其中最后一行为常用的音频参数:

  • nchannels:声道数
  • sampwidth:量化位数(byte)
  • framerate:采样频率
  • nframes:采样点数
  • 单通道

    对应code:

    import waveimport matplotlib.pyplot as pltimport numpy as npimport os filepath = "./data/" #添加路径filename= os.listdir(filepath) #得到文件夹下的所有文件名称 f = wave.open(filepath+filename[1],'rb')params = f.getparams()nchannels, sampwidth, framerate, nframes = params[:4]strData = f.readframes(nframes)#读取音频,字符串格式waveData = np.fromstring(strData,dtype=np.int16)#将字符串转化为intwaveData = waveData*1.0/(max(abs(waveData)))#wave幅值归一化# plot the wavetime = np.arange(0,nframes)*(1.0 / framerate)plt.plot(time,waveData)plt.xlabel("Time(s)")plt.ylabel("Amplitude")plt.title("Single channel wavedata")plt.grid('on')#标尺,on:有,off:无。

    结果图:

    多通道

    这里通道数为3,主要借助np.reshape一下,其他同单通道处理完全一致,对应code:

    # -*- coding: utf-8 -*-"""Created on Wed May 3 12:15:34 2017 @author: Nobleding""" import waveimport matplotlib.pyplot as pltimport numpy as npimport os filepath = "./data/" #添加路径filename= os.listdir(filepath) #得到文件夹下的所有文件名称 f = wave.open(filepath+filename[0],'rb')params = f.getparams()nchannels, sampwidth, framerate, nframes = params[:4]strData = f.readframes(nframes)#读取音频,字符串格式waveData = np.fromstring(strData,dtype=np.int16)#将字符串转化为intwaveData = waveData*1.0/(max(abs(waveData)))#wave幅值归一化waveData = np.reshape(waveData,[nframes,nchannels])f.close()# plot the wavetime = np.arange(0,nframes)*(1.0 / framerate)plt.figure()plt.subplot(5,1,1)plt.plot(time,waveData[:,0])plt.xlabel("Time(s)")plt.ylabel("Amplitude")plt.title("Ch-1 wavedata")plt.grid('on')#标尺,on:有,off:无。plt.subplot(5,1,3)plt.plot(time,waveData[:,1])plt.xlabel("Time(s)")plt.ylabel("Amplitude")plt.title("Ch-2 wavedata")plt.grid('on')#标尺,on:有,off:无。plt.subplot(5,1,5)plt.plot(time,waveData[:,2])plt.xlabel("Time(s)")plt.ylabel("Amplitude")plt.title("Ch-3 wavedata")plt.grid('on')#标尺,on:有,off:无。plt.show()

    效果图:

    单通道为多通道的特例,所以多通道的读取方式对任意通道wav文件都适用。需要注意的是,waveData在reshape之后,与之前的数据结构是不同的。即waveData[0]等价于reshape之前的waveData,但不影响绘图分析,只是在分析频谱时才有必要考虑这一点。

    3、wav写入

    涉及到的主要指令有三个:

    参数设置:

    nchannels = 1 #单通道为例sampwidth = 2fs = 8000data_size = len(outData)framerate = int(fs)nframes = data_sizecomptype = "NONE"compname = "not compressed"outwave.setparams((nchannels, sampwidth, framerate, nframes, comptype, compname))

    待写入wav文件的存储路径及文件名:

    outfile = filepath+'out1.wav'outwave = wave.open(outfile, 'wb')#定义存储路径以及文件名

    数据的写入:

    for v in outData:outwave.writeframes(struct.pack('h', int(v * 64000 / 2)))#outData:16位,-32767~32767,注意不要溢出

    单通道数据写入:

    import wave#import matplotlib.pyplot as pltimport numpy as npimport osimport struct #wav文件读取filepath = "./data/" #添加路径filename= os.listdir(filepath) #得到文件夹下的所有文件名称 f = wave.open(filepath+filename[1],'rb')params = f.getparams()nchannels, sampwidth, framerate, nframes = params[:4]strData = f.readframes(nframes)#读取音频,字符串格式waveData = np.fromstring(strData,dtype=np.int16)#将字符串转化为intwaveData = waveData*1.0/(max(abs(waveData)))#wave幅值归一化f.close()#wav文件写入outData = waveData#待写入wav的数据,这里仍然取waveData数据outfile = filepath+'out1.wav'outwave = wave.open(outfile, 'wb')#定义存储路径以及文件名nchannels = 1sampwidth = 2fs = 8000data_size = len(outData)framerate = int(fs)nframes = data_sizecomptype = "NONE"compname = "not compressed"outwave.setparams((nchannels, sampwidth, framerate, nframes, comptype, compname)) for v in outData: outwave.writeframes(struct.pack('h', int(v * 64000 / 2)))#outData:16位,-32767~32767,注意不要溢出outwave.close()

    多通道数据写入:

    多通道的写入与多通道读取类似,多通道读取是将一维数据reshape为二维,多通道的写入是将二维的数据reshape为一维,其实就是一个逆向的过程:

    import wave#import matplotlib.pyplot as pltimport numpy as npimport osimport struct #wav文件读取filepath = "./data/" #添加路径filename= os.listdir(filepath) #得到文件夹下的所有文件名称 f = wave.open(filepath+filename[0],'rb')params = f.getparams()nchannels, sampwidth, framerate, nframes = params[:4]strData = f.readframes(nframes)#读取音频,字符串格式waveData = np.fromstring(strData,dtype=np.int16)#将字符串转化为intwaveData = waveData*1.0/(max(abs(waveData)))#wave幅值归一化waveData = np.reshape(waveData,[nframes,nchannels])f.close()#wav文件写入outData = waveData#待写入wav的数据,这里仍然取waveData数据outData = np.reshape(outData,[nframes*nchannels,1])outfile = filepath+'out2.wav'outwave = wave.open(outfile, 'wb')#定义存储路径以及文件名nchannels = 3sampwidth = 2fs = 8000data_size = len(outData)framerate = int(fs)nframes = data_sizecomptype = "NONE"compname = "not compressed"outwave.setparams((nchannels, sampwidth, framerate, nframes, comptype, compname)) for v in outData: outwave.writeframes(struct.pack('h', int(v * 64000 / 2)))#outData:16位,-32767~32767,注意不要溢出outwave.close()

    这里用到struct.pack(.)二进制的转化:

    例如:

    4、音频播放

    wav文件的播放需要用到pyaudio,安装包点击这里。我将它放在\Scripts文件夹下,cmd并切换到对应目录

    pip install PyAudio-0.2.9-cp35-none-win_amd64.whl

    pyaudio安装完成。

    Pyaudio主要用法:

    主要列出pyaudio对象的open()方法的参数:

  • rate:采样率
  • channels:声道数
  • format:采样值的量化格式,值可以为paFloat32、paInt32、paInt24、paInt16、paInt8等。下面的例子中,使用get_from_width()将值为2的sampwidth转换为paInt16.
  • input:输入流标志,Ture表示开始输入流
  • output:输出流标志
  • 给出对应code:

    import waveimport pyaudio import os #wav文件读取filepath = "./data/" #添加路径filename= os.listdir(filepath) #得到文件夹下的所有文件名称 f = wave.open(filepath+filename[0],'rb')params = f.getparams()nchannels, sampwidth, framerate, nframes = params[:4]#instantiate PyAudio p = pyaudio.PyAudio() #define stream chunk chunk = 1024 #打开声音输出流stream = p.open(format = p.get_format_from_width(sampwidth), channels = nchannels, rate = framerate, output = True) #写声音输出流到声卡进行播放data = f.readframes(chunk) i=1while True: data = f.readframes(chunk) if data == b'': break stream.write(data) f.close()#stop stream stream.stop_stream() stream.close() #close PyAudio p.terminate()

    因为是python3.5,判断语句if data == b'': break 的b不能缺少。

    5、信号加窗

    通常对信号截断、分帧需要加窗,因为截断都有频域能量泄露,而窗函数可以减少截断带来的影响。

    窗函数在scipy.signal信号处理工具箱中,如hamming窗:

    import scipy.signal as signalpl.plot(signal.hanning(512))

    利用上面的函数,绘制hanning窗:

    import pylab as plimport scipy.signal as signalpl.figure(figsize=(6,2))pl.plot(signal.hanning(512))

    6、信号分帧

    信号分帧的理论依据,其中x是语音信号,w是窗函数:

    加窗截断类似采样,为了保证相邻帧不至于差别过大,通常帧与帧之间有帧移,其实就是插值平滑的作用。

    给出示意图:

    这里主要用到numpy工具包,涉及的指令有:

  • np.repeat:主要是直接重复
  • np.tile:主要是周期性重复
  • 对比一下:

    向量情况:

    矩阵情况:

    对于数据:

    repeat操作:

    tile操作:

    对应结果:

    对应分帧的代码实现:

    这是没有加窗的示例:

    import numpy as npimport waveimport os#import math def enframe(signal, nw, inc): '''将音频信号转化为帧。 参数含义: signal:原始音频型号 nw:每一帧的长度(这里指采样点的长度,即采样频率乘以时间间隔) inc:相邻帧的间隔(同上定义) ''' signal_length=len(signal) #信号总长度 if signal_length<=nw: #若信号长度小于一个帧的长度,则帧数定义为1 nf=1 else: #否则,计算帧的总长度 nf=int(np.ceil((1.0*signal_length-nw+inc)/inc)) pad_length=int((nf-1)*inc+nw) #所有帧加起来总的铺平后的长度 zeros=np.zeros((pad_length-signal_length,)) #不够的长度使用0填补,类似于FFT中的扩充数组操作 pad_signal=np.concatenate((signal,zeros)) #填补后的信号记为pad_signal indices=np.tile(np.arange(0,nw),(nf,1))+np.tile(np.arange(0,nf*inc,inc),(nw,1)).T #相当于对所有帧的时间点进行抽取,得到nf*nw长度的矩阵 indices=np.array(indices,dtype=np.int32) #将indices转化为矩阵 frames=pad_signal[indices] #得到帧信号# win=np.tile(winfunc(nw),(nf,1)) #window窗函数,这里默认取1# return frames*win #返回帧信号矩阵 return framesdef wavread(filename): f = wave.open(filename,'rb') params = f.getparams() nchannels, sampwidth, framerate, nframes = params[:4] strData = f.readframes(nframes)#读取音频,字符串格式 waveData = np.fromstring(strData,dtype=np.int16)#将字符串转化为int f.close() waveData = waveData*1.0/(max(abs(waveData)))#wave幅值归一化 waveData = np.reshape(waveData,[nframes,nchannels]).T return waveData filepath = "./data/" #添加路径dirname= os.listdir(filepath) #得到文件夹下的所有文件名称 filename = filepath+dirname[0]data = wavread(filename)nw = 512inc = 128Frame = enframe(data[0], nw, inc)

    如果需要加窗,只需要将函数修改为:

    def enframe(signal, nw, inc, winfunc): '''将音频信号转化为帧。 参数含义: signal:原始音频型号 nw:每一帧的长度(这里指采样点的长度,即采样频率乘以时间间隔) inc:相邻帧的间隔(同上定义) ''' signal_length=len(signal) #信号总长度 if signal_length<=nw: #若信号长度小于一个帧的长度,则帧数定义为1 nf=1 else: #否则,计算帧的总长度 nf=int(np.ceil((1.0*signal_length-nw+inc)/inc)) pad_length=int((nf-1)*inc+nw) #所有帧加起来总的铺平后的长度 zeros=np.zeros((pad_length-signal_length,)) #不够的长度使用0填补,类似于FFT中的扩充数组操作 pad_signal=np.concatenate((signal,zeros)) #填补后的信号记为pad_signal indices=np.tile(np.arange(0,nw),(nf,1))+np.tile(np.arange(0,nf*inc,inc),(nw,1)).T #相当于对所有帧的时间点进行抽取,得到nf*nw长度的矩阵 indices=np.array(indices,dtype=np.int32) #将indices转化为矩阵 frames=pad_signal[indices] #得到帧信号 win=np.tile(winfunc,(nf,1)) #window窗函数,这里默认取1 return frames*win #返回帧信号矩阵

    其中窗函数,以hamming窗为例:

    winfunc = signal.hamming(nw)Frame = enframe(data[0], nw, inc, winfunc)

    调用即可。

    7、语谱图

    其实得到了分帧信号,频域变换取幅值,就可以得到语谱图,如果仅仅是观察,matplotlib.pyplot有specgram指令:

    import waveimport matplotlib.pyplot as pltimport numpy as npimport os filepath = "./data/" #添加路径filename= os.listdir(filepath) #得到文件夹下的所有文件名称 f = wave.open(filepath+filename[0],'rb')params = f.getparams()nchannels, sampwidth, framerate, nframes = params[:4]strData = f.readframes(nframes)#读取音频,字符串格式waveData = np.fromstring(strData,dtype=np.int16)#将字符串转化为intwaveData = waveData*1.0/(max(abs(waveData)))#wave幅值归一化waveData = np.reshape(waveData,[nframes,nchannels]).Tf.close()# plot the waveplt.specgram(waveData[0],Fs = framerate, scale_by_freq = True, sides = 'default')plt.ylabel('Frequency(Hz)')plt.xlabel('Time(s)')plt.show()

    以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

    声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

    相关文章