时间:2021-05-22
前言
本文主要记录python下音频常用的操作,以.wav格式文件为例。其实网上有很多现成的音频工具包,如果仅仅调用,工具包是更方便的。
更多pyton下的操作可以参考: 用python做科学计算
1、批量读取.wav文件名:
这里用到字符串路径:
1.通常意义字符串(str)
2.原始字符串,以大写R 或 小写r开始,r'',不对特殊字符进行转义
3.Unicode字符串,u'' basestring子类
如:
path = './file/n'path = r'.\file\n'path = '.\\file\\n'三者等价,右划线\为转义字符,引号前加r表示原始字符串,而不转义(r:raw string).
常用获取帮助的方式:
>>> help(str)>>> dir(str)>>> help(str.replace)2、读取.wav文件
wave.open 用法:
wave.open(file,mode)mode可以是:
‘rb',读取文件;
‘wb',写入文件;
不支持同时读/写操作。
Wave_read.getparams用法:
f = wave.open(file,'rb')params = f.getparams()nchannels, sampwidth, framerate, nframes = params[:4]其中最后一行为常用的音频参数:
单通道
对应code:
import waveimport matplotlib.pyplot as pltimport numpy as npimport os filepath = "./data/" #添加路径filename= os.listdir(filepath) #得到文件夹下的所有文件名称 f = wave.open(filepath+filename[1],'rb')params = f.getparams()nchannels, sampwidth, framerate, nframes = params[:4]strData = f.readframes(nframes)#读取音频,字符串格式waveData = np.fromstring(strData,dtype=np.int16)#将字符串转化为intwaveData = waveData*1.0/(max(abs(waveData)))#wave幅值归一化# plot the wavetime = np.arange(0,nframes)*(1.0 / framerate)plt.plot(time,waveData)plt.xlabel("Time(s)")plt.ylabel("Amplitude")plt.title("Single channel wavedata")plt.grid('on')#标尺,on:有,off:无。结果图:
多通道
这里通道数为3,主要借助np.reshape一下,其他同单通道处理完全一致,对应code:
# -*- coding: utf-8 -*-"""Created on Wed May 3 12:15:34 2017 @author: Nobleding""" import waveimport matplotlib.pyplot as pltimport numpy as npimport os filepath = "./data/" #添加路径filename= os.listdir(filepath) #得到文件夹下的所有文件名称 f = wave.open(filepath+filename[0],'rb')params = f.getparams()nchannels, sampwidth, framerate, nframes = params[:4]strData = f.readframes(nframes)#读取音频,字符串格式waveData = np.fromstring(strData,dtype=np.int16)#将字符串转化为intwaveData = waveData*1.0/(max(abs(waveData)))#wave幅值归一化waveData = np.reshape(waveData,[nframes,nchannels])f.close()# plot the wavetime = np.arange(0,nframes)*(1.0 / framerate)plt.figure()plt.subplot(5,1,1)plt.plot(time,waveData[:,0])plt.xlabel("Time(s)")plt.ylabel("Amplitude")plt.title("Ch-1 wavedata")plt.grid('on')#标尺,on:有,off:无。plt.subplot(5,1,3)plt.plot(time,waveData[:,1])plt.xlabel("Time(s)")plt.ylabel("Amplitude")plt.title("Ch-2 wavedata")plt.grid('on')#标尺,on:有,off:无。plt.subplot(5,1,5)plt.plot(time,waveData[:,2])plt.xlabel("Time(s)")plt.ylabel("Amplitude")plt.title("Ch-3 wavedata")plt.grid('on')#标尺,on:有,off:无。plt.show()效果图:
单通道为多通道的特例,所以多通道的读取方式对任意通道wav文件都适用。需要注意的是,waveData在reshape之后,与之前的数据结构是不同的。即waveData[0]等价于reshape之前的waveData,但不影响绘图分析,只是在分析频谱时才有必要考虑这一点。
3、wav写入
涉及到的主要指令有三个:
参数设置:
nchannels = 1 #单通道为例sampwidth = 2fs = 8000data_size = len(outData)framerate = int(fs)nframes = data_sizecomptype = "NONE"compname = "not compressed"outwave.setparams((nchannels, sampwidth, framerate, nframes, comptype, compname))待写入wav文件的存储路径及文件名:
outfile = filepath+'out1.wav'outwave = wave.open(outfile, 'wb')#定义存储路径以及文件名数据的写入:
for v in outData:outwave.writeframes(struct.pack('h', int(v * 64000 / 2)))#outData:16位,-32767~32767,注意不要溢出单通道数据写入:
import wave#import matplotlib.pyplot as pltimport numpy as npimport osimport struct #wav文件读取filepath = "./data/" #添加路径filename= os.listdir(filepath) #得到文件夹下的所有文件名称 f = wave.open(filepath+filename[1],'rb')params = f.getparams()nchannels, sampwidth, framerate, nframes = params[:4]strData = f.readframes(nframes)#读取音频,字符串格式waveData = np.fromstring(strData,dtype=np.int16)#将字符串转化为intwaveData = waveData*1.0/(max(abs(waveData)))#wave幅值归一化f.close()#wav文件写入outData = waveData#待写入wav的数据,这里仍然取waveData数据outfile = filepath+'out1.wav'outwave = wave.open(outfile, 'wb')#定义存储路径以及文件名nchannels = 1sampwidth = 2fs = 8000data_size = len(outData)framerate = int(fs)nframes = data_sizecomptype = "NONE"compname = "not compressed"outwave.setparams((nchannels, sampwidth, framerate, nframes, comptype, compname)) for v in outData: outwave.writeframes(struct.pack('h', int(v * 64000 / 2)))#outData:16位,-32767~32767,注意不要溢出outwave.close()多通道数据写入:
多通道的写入与多通道读取类似,多通道读取是将一维数据reshape为二维,多通道的写入是将二维的数据reshape为一维,其实就是一个逆向的过程:
import wave#import matplotlib.pyplot as pltimport numpy as npimport osimport struct #wav文件读取filepath = "./data/" #添加路径filename= os.listdir(filepath) #得到文件夹下的所有文件名称 f = wave.open(filepath+filename[0],'rb')params = f.getparams()nchannels, sampwidth, framerate, nframes = params[:4]strData = f.readframes(nframes)#读取音频,字符串格式waveData = np.fromstring(strData,dtype=np.int16)#将字符串转化为intwaveData = waveData*1.0/(max(abs(waveData)))#wave幅值归一化waveData = np.reshape(waveData,[nframes,nchannels])f.close()#wav文件写入outData = waveData#待写入wav的数据,这里仍然取waveData数据outData = np.reshape(outData,[nframes*nchannels,1])outfile = filepath+'out2.wav'outwave = wave.open(outfile, 'wb')#定义存储路径以及文件名nchannels = 3sampwidth = 2fs = 8000data_size = len(outData)framerate = int(fs)nframes = data_sizecomptype = "NONE"compname = "not compressed"outwave.setparams((nchannels, sampwidth, framerate, nframes, comptype, compname)) for v in outData: outwave.writeframes(struct.pack('h', int(v * 64000 / 2)))#outData:16位,-32767~32767,注意不要溢出outwave.close()这里用到struct.pack(.)二进制的转化:
例如:
4、音频播放
wav文件的播放需要用到pyaudio,安装包点击这里。我将它放在\Scripts文件夹下,cmd并切换到对应目录
pip install PyAudio-0.2.9-cp35-none-win_amd64.whlpyaudio安装完成。
Pyaudio主要用法:
主要列出pyaudio对象的open()方法的参数:
给出对应code:
import waveimport pyaudio import os #wav文件读取filepath = "./data/" #添加路径filename= os.listdir(filepath) #得到文件夹下的所有文件名称 f = wave.open(filepath+filename[0],'rb')params = f.getparams()nchannels, sampwidth, framerate, nframes = params[:4]#instantiate PyAudio p = pyaudio.PyAudio() #define stream chunk chunk = 1024 #打开声音输出流stream = p.open(format = p.get_format_from_width(sampwidth), channels = nchannels, rate = framerate, output = True) #写声音输出流到声卡进行播放data = f.readframes(chunk) i=1while True: data = f.readframes(chunk) if data == b'': break stream.write(data) f.close()#stop stream stream.stop_stream() stream.close() #close PyAudio p.terminate()因为是python3.5,判断语句if data == b'': break 的b不能缺少。
5、信号加窗
通常对信号截断、分帧需要加窗,因为截断都有频域能量泄露,而窗函数可以减少截断带来的影响。
窗函数在scipy.signal信号处理工具箱中,如hamming窗:
import scipy.signal as signalpl.plot(signal.hanning(512))利用上面的函数,绘制hanning窗:
import pylab as plimport scipy.signal as signalpl.figure(figsize=(6,2))pl.plot(signal.hanning(512))6、信号分帧
信号分帧的理论依据,其中x是语音信号,w是窗函数:
加窗截断类似采样,为了保证相邻帧不至于差别过大,通常帧与帧之间有帧移,其实就是插值平滑的作用。
给出示意图:
这里主要用到numpy工具包,涉及的指令有:
对比一下:
向量情况:
矩阵情况:
对于数据:
repeat操作:
tile操作:
对应结果:
对应分帧的代码实现:
这是没有加窗的示例:
import numpy as npimport waveimport os#import math def enframe(signal, nw, inc): '''将音频信号转化为帧。 参数含义: signal:原始音频型号 nw:每一帧的长度(这里指采样点的长度,即采样频率乘以时间间隔) inc:相邻帧的间隔(同上定义) ''' signal_length=len(signal) #信号总长度 if signal_length<=nw: #若信号长度小于一个帧的长度,则帧数定义为1 nf=1 else: #否则,计算帧的总长度 nf=int(np.ceil((1.0*signal_length-nw+inc)/inc)) pad_length=int((nf-1)*inc+nw) #所有帧加起来总的铺平后的长度 zeros=np.zeros((pad_length-signal_length,)) #不够的长度使用0填补,类似于FFT中的扩充数组操作 pad_signal=np.concatenate((signal,zeros)) #填补后的信号记为pad_signal indices=np.tile(np.arange(0,nw),(nf,1))+np.tile(np.arange(0,nf*inc,inc),(nw,1)).T #相当于对所有帧的时间点进行抽取,得到nf*nw长度的矩阵 indices=np.array(indices,dtype=np.int32) #将indices转化为矩阵 frames=pad_signal[indices] #得到帧信号# win=np.tile(winfunc(nw),(nf,1)) #window窗函数,这里默认取1# return frames*win #返回帧信号矩阵 return framesdef wavread(filename): f = wave.open(filename,'rb') params = f.getparams() nchannels, sampwidth, framerate, nframes = params[:4] strData = f.readframes(nframes)#读取音频,字符串格式 waveData = np.fromstring(strData,dtype=np.int16)#将字符串转化为int f.close() waveData = waveData*1.0/(max(abs(waveData)))#wave幅值归一化 waveData = np.reshape(waveData,[nframes,nchannels]).T return waveData filepath = "./data/" #添加路径dirname= os.listdir(filepath) #得到文件夹下的所有文件名称 filename = filepath+dirname[0]data = wavread(filename)nw = 512inc = 128Frame = enframe(data[0], nw, inc)如果需要加窗,只需要将函数修改为:
def enframe(signal, nw, inc, winfunc): '''将音频信号转化为帧。 参数含义: signal:原始音频型号 nw:每一帧的长度(这里指采样点的长度,即采样频率乘以时间间隔) inc:相邻帧的间隔(同上定义) ''' signal_length=len(signal) #信号总长度 if signal_length<=nw: #若信号长度小于一个帧的长度,则帧数定义为1 nf=1 else: #否则,计算帧的总长度 nf=int(np.ceil((1.0*signal_length-nw+inc)/inc)) pad_length=int((nf-1)*inc+nw) #所有帧加起来总的铺平后的长度 zeros=np.zeros((pad_length-signal_length,)) #不够的长度使用0填补,类似于FFT中的扩充数组操作 pad_signal=np.concatenate((signal,zeros)) #填补后的信号记为pad_signal indices=np.tile(np.arange(0,nw),(nf,1))+np.tile(np.arange(0,nf*inc,inc),(nw,1)).T #相当于对所有帧的时间点进行抽取,得到nf*nw长度的矩阵 indices=np.array(indices,dtype=np.int32) #将indices转化为矩阵 frames=pad_signal[indices] #得到帧信号 win=np.tile(winfunc,(nf,1)) #window窗函数,这里默认取1 return frames*win #返回帧信号矩阵其中窗函数,以hamming窗为例:
winfunc = signal.hamming(nw)Frame = enframe(data[0], nw, inc, winfunc)调用即可。
7、语谱图
其实得到了分帧信号,频域变换取幅值,就可以得到语谱图,如果仅仅是观察,matplotlib.pyplot有specgram指令:
import waveimport matplotlib.pyplot as pltimport numpy as npimport os filepath = "./data/" #添加路径filename= os.listdir(filepath) #得到文件夹下的所有文件名称 f = wave.open(filepath+filename[0],'rb')params = f.getparams()nchannels, sampwidth, framerate, nframes = params[:4]strData = f.readframes(nframes)#读取音频,字符串格式waveData = np.fromstring(strData,dtype=np.int16)#将字符串转化为intwaveData = waveData*1.0/(max(abs(waveData)))#wave幅值归一化waveData = np.reshape(waveData,[nframes,nchannels]).Tf.close()# plot the waveplt.specgram(waveData[0],Fs = framerate, scale_by_freq = True, sides = 'default')plt.ylabel('Frequency(Hz)')plt.xlabel('Time(s)')plt.show()以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
复制代码代码如下:extJs中常用到的增删改查操作的示例代码
我们需要用到一个叫pydub的类库,pydub是python的高级一个音频处理库,可以让你以一种不那么蠢的方法处理音频。---开发者原话https://gith
简介OpenCV中使用VideoCapture类写的视频是没有音频的,如果要进一步处理音频则需要用到一个库——MoviePy,这个库是Python视频编辑库,可
这篇文章主要介绍了python操作openpyxl导出Excel设置单元格格式及合并处理代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的
文件操作示例复制代码代码如下:#输入文件f=open(r'D:\Python27\pro\123.bak')#输出文件fw=open(r'D:\Python27