时间:2021-05-22
Summary
主要包括以下三种途径:
使用独立的函数;
使用torch.type()函数;
使用type_as(tesnor)将张量转换为给定类型的张量。
使用独立函数
import torchtensor = torch.randn(3, 5)print(tensor)# torch.long() 将tensor投射为long类型long_tensor = tensor.long()print(long_tensor)# torch.half()将tensor投射为半精度浮点类型half_tensor = tensor.half()print(half_tensor)# torch.int()将该tensor投射为int类型int_tensor = tensor.int()print(int_tensor)# torch.double()将该tensor投射为double类型double_tensor = tensor.double()print(double_tensor)# torch.float()将该tensor投射为float类型float_tensor = tensor.float()print(float_tensor)# torch.char()将该tensor投射为char类型char_tensor = tensor.char()print(char_tensor)# torch.byte()将该tensor投射为byte类型byte_tensor = tensor.byte()print(byte_tensor)# torch.short()将该tensor投射为short类型short_tensor = tensor.short()print(short_tensor)-0.5841 -1.6370 0.1353 0.6334 -3.0761-0.2628 0.1245 0.8626 0.4095 -0.3633 1.3605 0.5055 -2.0090 0.8933 -0.6267[torch.FloatTensor of size 3x5] 0 -1 0 0 -3 0 0 0 0 0 1 0 -2 0 0[torch.LongTensor of size 3x5]-0.5840 -1.6367 0.1353 0.6333 -3.0762-0.2627 0.1245 0.8628 0.4094 -0.3633 1.3604 0.5054 -2.0098 0.8936 -0.6265[torch.HalfTensor of size 3x5] 0 -1 0 0 -3 0 0 0 0 0 1 0 -2 0 0[torch.IntTensor of size 3x5]-0.5841 -1.6370 0.1353 0.6334 -3.0761-0.2628 0.1245 0.8626 0.4095 -0.3633 1.3605 0.5055 -2.0090 0.8933 -0.6267[torch.DoubleTensor of size 3x5]-0.5841 -1.6370 0.1353 0.6334 -3.0761-0.2628 0.1245 0.8626 0.4095 -0.3633 1.3605 0.5055 -2.0090 0.8933 -0.6267[torch.FloatTensor of size 3x5] 0 -1 0 0 -3 0 0 0 0 0 1 0 -2 0 0[torch.CharTensor of size 3x5] 0 255 0 0 253 0 0 0 0 0 1 0 254 0 0[torch.ByteTensor of size 3x5] 0 -1 0 0 -3 0 0 0 0 0 1 0 -2 0 0[torch.ShortTensor of size 3x5]其中,torch.Tensor、torch.rand、torch.randn 均默认生成 torch.FloatTensor型 :
import torchtensor = torch.Tensor(3, 5)assert isinstance(tensor, torch.FloatTensor)tensor = torch.rand(3, 5)assert isinstance(tensor, torch.FloatTensor)tensor = torch.randn(3, 5)assert isinstance(tensor, torch.FloatTensor)使用torch.type()函数
type(new_type=None, async=False)import torchtensor = torch.randn(3, 5)print(tensor)int_tensor = tensor.type(torch.IntTensor)print(int_tensor)-0.4449 0.0332 0.5187 0.1271 2.2303 1.3961 -0.1542 0.8498 -0.3438 -0.2834-0.5554 0.1684 1.5216 2.4527 0.0379[torch.FloatTensor of size 3x5] 0 0 0 0 2 1 0 0 0 0 0 0 1 2 0[torch.IntTensor of size 3x5]使用type_as(tesnor)将张量转换为给定类型的张量
import torchtensor_1 = torch.FloatTensor(5)tensor_2 = torch.IntTensor([10, 20])tensor_1 = tensor_1.type_as(tensor_2)assert isinstance(tensor_1, torch.IntTensor)以上这篇pytorch: tensor类型的构建与相互转换实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
1.tensor张量与numpy相互转换tensor----->numpyimporttorcha=torch.ones([2,5])tensor([[1.,1
在使用pytorch作为深度学习的框架时,经常会遇到变量variable、张量tensor与矩阵numpy的类型的相互转化的问题,本章结合这实际图像对此转化方法
本文实例讲述了javascript实现unicode与ASCII相互转换的方法。分享给大家供大家参考,具体如下:Unicode、ASCII相互转换//Ascii
java日期各种格式之间的相互转换实例代码java日期各种格式之间的相互转换,直接调用静态方法实例代码:java日期各种格式之间的相互转换,直接调用静态方法pa
本文实例讲述了php变量与数组相互转换的方法。分享给大家供大家参考,具体如下:在php中数组与变量相互转换我们可使用到extract或compact函数,这里就