时间:2021-05-22
常见的一种应用场景:
条件:假设A的shape为[4, 2],B的shape为[5, 2]
目的:实现A中的每一行, 减去B中的所有行(broadcast操作)。
实现:
A1 = np.expand_dims(A, -2) => A1的shape变为[4, 1, 2]B1 = np.expand_dims(B, 0) => B1的shape变为[1, 5, 2]A1 - B1其他示例:
wh = np.random.randint(1,3, size=(4,2))np.expand_dims(wh, -2).shapenp.expand_dims(wh, 1).shape在倒数第2个轴后面(在正数第1个轴后面)插入一个新轴。
以上这篇基于numpy中的expand_dims函数用法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
numpy.expand_dims(a,axis)Examples>>>x=np.array([1,2])>>>x.shape(2,)>>>y=np.expan
一般TensorFlow中扩展维度可以使用tf.expand_dims()。近来发现另一种可以直接运用取数据操作符[]就能扩展维度的方法。用法很简单,在要扩展的
flatten()函数用法flatten是numpy.ndarray.flatten的一个函数,即返回一个折叠成一维的数组。但是该函数只能适用于numpy对象,
flatten()函数用法flatten是numpy.ndarray.flatten的一个函数,即返回一个一维数组。flatten只能适用于numpy对象,即a
Python矩阵的基本用法mat()函数将目标数据的类型转化成矩阵(matrix)1,mat()函数和array()函数的区别Numpy函数库中存在两种不同的数