时间:2021-05-22
关于opencv
OpenCV 是 Intel 开源计算机视觉库 (Computer Version) 。它由一系列 C 函数和少量 C++ 类构成,实现了图像处理和计算机视觉方面的很多通用算法。
OpenCV 拥有包括 300 多个 C 函数的跨平台的中、高层 API 。它不依赖于其它的外部库 —— 尽管也可以使用某些外部库。 OpenCV 对非商业应用和商业应用都是免费 的。同时 OpenCV 提供了对硬件的访问,可以直接访问摄像头,并且 opencv 还提供了一个简单的 GUI(graphics user interface) 系统 :highgui 。 我们就通过 OpenCV 提供的一些方法来构造出这个人脸检测 ( face detection ) 程序来。
opencv的python包装
OpenCV 本身是有 C/C++ 编写的,如果要在其他语言中使用,我们可以通过对其动态链接库文件进行包装即可,幸运的是, Python 下有很多个这样的包装,本文中使用的是 Cvtypes 。
事实上,在 Python 中很多的包都是来自第三方的,比如 PIL(Python Image Library) 即为 C 语言实现的一个图形处理包,被包装到了 Python 中,这些包装可以让你像使用 Python 的内建函数一样的使用这些 API 。
这个例子使用python编程:用opencv按一定间隔截取视频帧,并保存为图片。
import cv2 vc = cv2.VideoCapture('Test.avi') #读入视频文件 c=1 if vc.isOpened(): #判断是否正常打开 rval , frame = vc.read() else: rval = False timeF = 1000 #视频帧计数间隔频率 while rval: #循环读取视频帧 rval, frame = vc.read() if(c%timeF == 0): #每隔timeF帧进行存储操作 cv2.imwrite('image/'+str(c) + '.jpg',frame) #存储为图像 c = c + 1 cv2.waitKey(1) vc.release()以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
视频画面本质上是由一帧一帧的连续图像组成的,播放视频其实就是在播放窗口把一系列连续图像按一定的时间间隔一幅幅贴上去实现的。人眼在连续图像的刷新最少达到每秒24帧
本篇博客介绍利用python脚本实现视频分帧,并将每一帧保存到本地。主要基于opencv包来实现,在运行代码前确保opencv包已正确安装。下面是主要代码:im
本文实例为大家分享了python+opencv实现移动侦测的具体代码,供大家参考,具体内容如下1.帧差法原理移动侦测即是根据视频每帧或者几帧之间像素的差异,对差
首先给出展示结果,大体就是检测工业板子是否出现。采取检测的方法比较简单,用的OpenCV的模板检测。大体思路opencv读取视频将视频分割为帧对每一帧进行处理(
假如文件夹有大量视频文件,需求目标是想从每个视频中提取一帧作为视频的一个封面图片,本文利用opencv-python模块实现需求。结合自己的工作,做一下简单的记