时间:2021-05-23
1.正态分布简介
正态分布(normal distribtution)又叫做高斯分布(Gaussian distribution),是一个非常重要也非常常见的连续概率分布。正态分布大家也都非常熟悉,下面做一些简单的介绍。
假设随机变量XX服从一个位置参数为μμ、尺度参数为σσ的正态分布,则可以记为:
而概率密度函数为
2.在python中画正态分布直方图
先直接上代码
import numpy as npimport matplotlib.mlab as mlabimport matplotlib.pyplot as pltdef demo1(): mu ,sigma = 0, 1 sampleNo = 1000 np.random.seed(0) s = np.random.normal(mu, sigma, sampleNo) plt.hist(s, bins=100, normed=True) plt.show()上面是一个标准正态分布的直方图。最后输出的图像为:
很多同学心里会有疑惑:这个图像看上去虽然是有点奇怪,虽然形状有点像正态分布,但是差得还比较多嘛,不能算是严格意义上的正态分布。
为什么会有这种情况出现呢?其实原因很简单,代码中我们设定的smapleno = 1000。这个数量并不是很大,所以整个图像看起来分布并不是很规则,只是有大致的正态分布的趋势。如果我们将这个参数加大,相当于增加样本数量,那么整个图像就会更加接近正态分布的形状。跟抛硬币的原理一致,抛的次数越多,正面与反面的出现概率更接近50%。
如果我们将sampleno设置为1000000,分布图像如下。
下面这个图像是不是看起来就漂亮多了!
3.画直方图与概率分布曲线
import numpy as npimport matplotlib.mlab as mlabimport matplotlib.pyplot as pltdef demo2(): mu, sigma , num_bins = 0, 1, 50 x = mu + sigma * np.random.randn(1000000) # 正态分布的数据 n, bins, patches = plt.hist(x, num_bins, normed=True, facecolor = 'blue', alpha = 0.5) # 拟合曲线 y = mlab.normpdf(bins, mu, sigma) plt.plot(bins, y, 'r--') plt.xlabel('Expectation') plt.ylabel('Probability') plt.title('histogram of normal distribution: $\mu = 0$, $\sigma=1$') plt.subplots_adjust(left = 0.15) plt.show()最后得到的图像为:
以上这篇在python中画正态分布图像的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
1、生成正态分布数据并绘制概率分布图importpandasaspdimportnumpyasnpimportmatplotlib.pyplotasplt#根据
本文实例讲述了Python使用numpy产生正态分布随机数的向量或矩阵操作。分享给大家供大家参考,具体如下:简单来说,正态分布(Normaldistributi
importnumpyasnpimportmatplotlib.pyplotaspltimportmath#Python实现正态分布#绘制正态分布概率密度函数u
使用Python绘制正态分布曲线,借助matplotlib绘图工具;#-*-coding:utf-8-*-"""python绘制标准正态分布曲线"""#====
背景总结统计工作中几个常用用法在python统计函数库scipy.stats的使用范例。正态分布以正态分布的常见需求为例了解scipy.stats的基本使用方法