时间:2021-05-23
python版本选择
这里选的python版本是2.7,因为我之前用python3试了几次,发现在画3d图的时候会报错,所以改用了2.7。
数据集选择
数据集我选了一个包含两个变量,三个参数的数据集,这样可以画出3d图形对结果进行验证。
部分函数总结
symbols()函数:首先要安装sympy库才可以使用。用法:
>>>x1=symbols('x2')>>>x1+1x2+1在这个例子中,x1和x2是不一样的,x2代表的是一个函数的变量,而x1代表的是python中的一个变量,它可以表示函数的变量,也可以表示其他的任何量,它替代x2进行函数的计算。实际使用的时候我们可以将x1,x2都命名为x,但是我们要知道他们俩的区别。
再看看这个例子:
作为python变量的x被2这个数值覆盖了,所以它现在不再表示函数变量x,而expr依然是函数变量x+1的别名,所以结果依然是x+1。
subs()函数:既然普通的方法无法为函数变量赋值,那就肯定有函数来实现这个功能,用法:
diff()函数:求偏导数,用法:result=diff(fun,x),这个就是求fun函数对x变量的偏导数,结果result也是一个变量,需要赋值才能得到准确结果。
代码实现:
from__future__importdivisionfromsympyimportsymbols,diff,expandimportnumpyasnpimportmatplotlib.pyplotaspltfrommpl_toolkits.mplot3dimportAxes3Ddata={'x1':[100,50,100,100,50,80,75,65,90,90],'x2':[4,3,4,2,2,2,3,4,3,2],'y':[9.3,4.8,8.9,6.5,4.2,6.2,7.4,6.0,7.6,6.1]}#初始化数据集theta0,theta1,theta2=symbols('theta0theta1theta2',real=True)#y=theta0+theta1*x1+theta2*x2,定义参数costfuc=0*theta0foriinrange(10):costfuc+=(theta0+theta1*data['x1'][i]+theta2*data['x2'][i]-data['y'][i])**2costfuc/=20#初始化代价函数dtheta0=diff(costfuc,theta0)dtheta1=diff(costfuc,theta1)dtheta2=diff(costfuc,theta2)rtheta0=1rtheta1=1rtheta2=1#为参数赋初始值costvalue=costfuc.subs({theta0:rtheta0,theta1:rtheta1,theta2:rtheta2})newcostvalue=0#用cost的值的变化程度来判断是否已经到最小值了count=0alpha=0.0001#设置学习率,一定要设置的比较小,否则无法到达最小值while(costvalue-newcostvalue>0.00001ornewcostvalue-costvalue>0.00001)andcount<1000:count+=1costvalue=newcostvaluertheta0=rtheta0-alpha*dtheta0.subs({theta0:rtheta0,theta1:rtheta1,theta2:rtheta2})rtheta1=rtheta1-alpha*dtheta1.subs({theta0:rtheta0,theta1:rtheta1,theta2:rtheta2})rtheta2=rtheta2-alpha*dtheta2.subs({theta0:rtheta0,theta1:rtheta1,theta2:rtheta2})newcostvalue=costfuc.subs({theta0:rtheta0,theta1:rtheta1,theta2:rtheta2})rtheta0=round(rtheta0,4)rtheta1=round(rtheta1,4)rtheta2=round(rtheta2,4)#给结果保留4位小数,防止数值溢出print(rtheta0,rtheta1,rtheta2)fig=plt.figure()ax=Axes3D(fig)ax.scatter(data['x1'],data['x2'],data['y'])#绘制散点图xx=np.arange(20,100,1)yy=np.arange(1,5,0.05)X,Y=np.meshgrid(xx,yy)Z=X*rtheta1+Y*rtheta2+rtheta0ax.plot_surface(X,Y,Z,rstride=1,cstride=1,cmap=plt.get_cmap('rainbow'))plt.show()#绘制3d图进行验证结果:
实例扩展:
'''梯度下降算法Batch Gradient DescentStochastic Gradient Descent SGD'''__author__ = 'epleone'import numpy as npimport matplotlib.pyplot as pltfrom mpl_toolkits.mplot3d import Axes3Dimport sys# 使用随机数种子, 让每次的随机数生成相同,方便调试# np.random.seed(111111111)class GradientDescent(object): eps = 1.0e-8 max_iter = 1000000 # 暂时不需要 dim = 1 func_args = [2.1, 2.7] # [w_0, .., w_dim, b] def __init__(self, func_arg=None, N=1000): self.data_num = N if func_arg is not None: self.FuncArgs = func_arg self._getData() def _getData(self): x = 20 * (np.random.rand(self.data_num, self.dim) - 0.5) b_1 = np.ones((self.data_num, 1), dtype=np.float) # x = np.concatenate((x, b_1), axis=1) self.x = np.concatenate((x, b_1), axis=1) def func(self, x): # noise太大的话, 梯度下降法失去作用 noise = 0.01 * np.random.randn(self.data_num) + 0 w = np.array(self.func_args) # y1 = w * self.x[0, ] # 直接相乘 y = np.dot(self.x, w) # 矩阵乘法 y += noise return y @property def FuncArgs(self): return self.func_args @FuncArgs.setter def FuncArgs(self, args): if not isinstance(args, list): raise Exception( 'args is not list, it should be like [w_0, ..., w_dim, b]') if len(args) == 0: raise Exception('args is empty list!!') if len(args) == 1: args.append(0.0) self.func_args = args self.dim = len(args) - 1 self._getData() @property def EPS(self): return self.eps @EPS.setter def EPS(self, value): if not isinstance(value, float) and not isinstance(value, int): raise Exception("The type of eps should be an float number") self.eps = value def plotFunc(self): # 一维画图 if self.dim == 1: # x = np.sort(self.x, axis=0) x = self.x y = self.func(x) fig, ax = plt.subplots() ax.plot(x, y, 'o') ax.set(xlabel='x ', ylabel='y', title='Loss Curve') ax.grid() plt.show() # 二维画图 if self.dim == 2: # x = np.sort(self.x, axis=0) x = self.x y = self.func(x) xs = x[:, 0] ys = x[:, 1] zs = y fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(xs, ys, zs, c='r', marker='o') ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') plt.show() else: # plt.axis('off') plt.text( 0.5, 0.5, "The dimension(x.dim > 2) \n is too high to draw", size=17, rotation=0., ha="center", va="center", bbox=dict( boxstyle="round", ec=(1., 0.5, 0.5), fc=(1., 0.8, 0.8), )) plt.draw() plt.show() # print('The dimension(x.dim > 2) is too high to draw') # 梯度下降法只能求解凸函数 def _gradient_descent(self, bs, lr, epoch): x = self.x # shuffle数据集没有必要 # np.random.shuffle(x) y = self.func(x) w = np.ones((self.dim + 1, 1), dtype=float) for e in range(epoch): print('epoch:' + str(e), end=',') # 批量梯度下降,bs为1时 等价单样本梯度下降 for i in range(0, self.data_num, bs): y_ = np.dot(x[i:i + bs], w) loss = y_ - y[i:i + bs].reshape(-1, 1) d = loss * x[i:i + bs] d = d.sum(axis=0) / bs d = lr * d d.shape = (-1, 1) w = w - d y_ = np.dot(self.x, w) loss_ = abs((y_ - y).sum()) print('\tLoss = ' + str(loss_)) print('拟合的结果为:', end=',') print(sum(w.tolist(), [])) print() if loss_ < self.eps: print('The Gradient Descent algorithm has converged!!\n') break pass def __call__(self, bs=1, lr=0.1, epoch=10): if sys.version_info < (3, 4): raise RuntimeError('At least Python 3.4 is required') if not isinstance(bs, int) or not isinstance(epoch, int): raise Exception( "The type of BatchSize/Epoch should be an integer number") self._gradient_descent(bs, lr, epoch) pass passif __name__ == "__main__": if sys.version_info < (3, 4): raise RuntimeError('At least Python 3.4 is required') gd = GradientDescent([1.2, 1.4, 2.1, 4.5, 2.1]) # gd = GradientDescent([1.2, 1.4, 2.1]) print("要拟合的参数结果是: ") print(gd.FuncArgs) print("===================\n\n") # gd.EPS = 0.0 gd.plotFunc() gd(10, 0.01) print("Finished!")到此这篇关于python实现梯度下降算法的实例详解的文章就介绍到这了,更多相关教你用python实现梯度下降算法内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例为大家分享了python实现梯度下降算法的具体代码,供大家参考,具体内容如下简介本文使用python实现了梯度下降算法,支持y=Wx+b的线性回归目前支
本文实例为大家分享了python批量梯度下降算法的具体代码,供大家参考,具体内容如下问题:将拥有两个自变量的二阶函数绘制到空间坐标系中,并通过批量梯度下降算法找
python使用梯度下降算法实现一个多线性回归,供大家参考,具体内容如下图示:importpandasaspdimportmatplotlib.pylabasp
本文实例为大家分享了python实现梯度下降和逻辑回归的具体代码,供大家参考,具体内容如下importnumpyasnpimportpandasaspdimpo
最近我在用梯度下降算法绘制神经网络的数据时,遇到了一些算法性能的问题。梯度下降算法的代码如下(伪代码):defgradient_descent():#thegr