时间:2021-05-23
1、建立仿真模型
(1)假设有一辆小车在一平面运动,起始坐标为[0,0],运动速度为1m/s,加速度为0.1 m / s 2 m/s^2 m/s2,则可以建立如下的状态方程:
Y = A ∗ X + B ∗ U Y=A*X+B*U Y=A∗X+B∗U
U为速度和加速度的的矩阵
U = [ 1 0.1 ] U= \begin{bmatrix} 1 \\ 0.1\\ \end{bmatrix} U=[10.1]
X为当前时刻的坐标,速度,加速度
X = [ x y y a w V ] X= \begin{bmatrix} x \\ y \\ yaw \\ V \end{bmatrix} X=⎣⎢⎢⎡xyyawV⎦⎥⎥⎤
Y为下一时刻的状态
则观察矩阵A为:
A = [ 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 ] A= \begin{bmatrix} 1&0 & 0 &0 \\ 0 & 1 & 0&0 \\ 0 & 0 &1 &0 \\ 0&0 & 0 &0 \end{bmatrix} A=⎣⎢⎢⎡1000010000100000⎦⎥⎥⎤
矩阵B则决定小车的运动规矩,这里取B为:
B = [ c o s ( x ) ∗ t 0 s i n ( x ) ∗ t 0 0 t 1 0 ] B= \begin{bmatrix} cos(x)*t &0\\ sin(x)*t &0\\ 0&t\\ 1&0 \end{bmatrix} B=⎣⎢⎢⎡cos(x)∗tsin(x)∗t0100t0⎦⎥⎥⎤
python编程实现小车的运动轨迹:
运行结果:
2、生成观测数据
实际运用中,我们需要对小车的位置进行定位,假设坐标系上有4个观测点,在小车运动过程中,需要定时将小车距离这4个观测点的位置距离记录下来,这样,当小车下一次寻迹时就有了参考点;
def observation(x_true, xd, u, rf_id): x_true = motion_model(x_true, u) # add noise to gps x-y z = np.zeros((0, 3)) for i in range(len(rf_id[:, 0])): dx = x_true[0, 0] - rf_id[i, 0] dy = x_true[1, 0] - rf_id[i, 1] d = math.hypot(dx, dy) if d <= MAX_RANGE: dn = d + np.random.randn() * Q_sim[0, 0] ** 0.5 # add noise zi = np.array([[dn, rf_id[i, 0], rf_id[i, 1]]]) z = np.vstack((z, zi)) # add noise to input ud1 = u[0, 0] + np.random.randn() * R_sim[0, 0] ** 0.5 ud2 = u[1, 0] + np.random.randn() * R_sim[1, 1] ** 0.5 ud = np.array([[ud1, ud2]]).T xd = motion_model(xd, ud) return x_true, z, xd, ud3、实现粒子滤波
#def gauss_likelihood(x, sigma): p = 1.0 / math.sqrt(2.0 * math.pi * sigma ** 2) * \ math.exp(-x ** 2 / (2 * sigma ** 2)) return pdef pf_localization(px, pw, z, u): """ Localization with Particle filter """ for ip in range(NP): x = np.array([px[:, ip]]).T w = pw[0, ip] # 预测输入 ud1 = u[0, 0] + np.random.randn() * R[0, 0] ** 0.5 ud2 = u[1, 0] + np.random.randn() * R[1, 1] ** 0.5 ud = np.array([[ud1, ud2]]).T x = motion_model(x, ud) # 计算权重 for i in range(len(z[:, 0])): dx = x[0, 0] - z[i, 1] dy = x[1, 0] - z[i, 2] pre_z = math.hypot(dx, dy) dz = pre_z - z[i, 0] w = w * gauss_likelihood(dz, math.sqrt(Q[0, 0])) px[:, ip] = x[:, 0] pw[0, ip] = w pw = pw / pw.sum() # 归一化 x_est = px.dot(pw.T) p_est = calc_covariance(x_est, px, pw) #计算有效粒子数 N_eff = 1.0 / (pw.dot(pw.T))[0, 0] #重采样 if N_eff < NTh: px, pw = re_sampling(px, pw) return x_est, p_est, px, pwdef re_sampling(px, pw): """ low variance re-sampling """ w_cum = np.cumsum(pw) base = np.arange(0.0, 1.0, 1 / NP) re_sample_id = base + np.random.uniform(0, 1 / NP) indexes = [] ind = 0 for ip in range(NP): while re_sample_id[ip] > w_cum[ind]: ind += 1 indexes.append(ind) px = px[:, indexes] pw = np.zeros((1, NP)) + 1.0 / NP # init weight return px, pw4、完整源码
该代码来源于https://github.com/AtsushiSakai/PythonRobotics
"""Particle Filter localization sampleauthor: Atsushi Sakai (@Atsushi_twi)"""import mathimport matplotlib.pyplot as pltimport numpy as npfrom scipy.spatial.transform import Rotation as Rot# Estimation parameter of PFQ = np.diag([0.2]) ** 2 # range errorR = np.diag([2.0, np.deg2rad(40.0)]) ** 2 # input error# Simulation parameterQ_sim = np.diag([0.2]) ** 2R_sim = np.diag([1.0, np.deg2rad(30.0)]) ** 2DT = 0.1 # time tick [s]SIM_TIME = 50.0 # simulation time [s]MAX_RANGE = 20.0 # maximum observation range# Particle filter parameterNP = 100 # Number of ParticleNTh = NP / 2.0 # Number of particle for re-samplingshow_animation = Truedef calc_input(): v = 1.0 # [m/s] yaw_rate = 0.1 # [rad/s] u = np.array([[v, yaw_rate]]).T return udef observation(x_true, xd, u, rf_id): x_true = motion_model(x_true, u) # add noise to gps x-y z = np.zeros((0, 3)) for i in range(len(rf_id[:, 0])): dx = x_true[0, 0] - rf_id[i, 0] dy = x_true[1, 0] - rf_id[i, 1] d = math.hypot(dx, dy) if d <= MAX_RANGE: dn = d + np.random.randn() * Q_sim[0, 0] ** 0.5 # add noise zi = np.array([[dn, rf_id[i, 0], rf_id[i, 1]]]) z = np.vstack((z, zi)) # add noise to input ud1 = u[0, 0] + np.random.randn() * R_sim[0, 0] ** 0.5 ud2 = u[1, 0] + np.random.randn() * R_sim[1, 1] ** 0.5 ud = np.array([[ud1, ud2]]).T xd = motion_model(xd, ud) return x_true, z, xd, uddef motion_model(x, u): F = np.array([[1.0, 0, 0, 0], [0, 1.0, 0, 0], [0, 0, 1.0, 0], [0, 0, 0, 0]]) B = np.array([[DT * math.cos(x[2, 0]), 0], [DT * math.sin(x[2, 0]), 0], [0.0, DT], [1.0, 0.0]]) x = F.dot(x) + B.dot(u) return xdef gauss_likelihood(x, sigma): p = 1.0 / math.sqrt(2.0 * math.pi * sigma ** 2) * \ math.exp(-x ** 2 / (2 * sigma ** 2)) return pdef calc_covariance(x_est, px, pw): """ calculate covariance matrix see ipynb doc """ cov = np.zeros((3, 3)) n_particle = px.shape[1] for i in range(n_particle): dx = (px[:, i:i + 1] - x_est)[0:3] cov += pw[0, i] * dx @ dx.T cov *= 1.0 / (1.0 - pw @ pw.T) return covdef pf_localization(px, pw, z, u): """ Localization with Particle filter """ for ip in range(NP): x = np.array([px[:, ip]]).T w = pw[0, ip] # Predict with random input sampling ud1 = u[0, 0] + np.random.randn() * R[0, 0] ** 0.5 ud2 = u[1, 0] + np.random.randn() * R[1, 1] ** 0.5 ud = np.array([[ud1, ud2]]).T x = motion_model(x, ud) # Calc Importance Weight for i in range(len(z[:, 0])): dx = x[0, 0] - z[i, 1] dy = x[1, 0] - z[i, 2] pre_z = math.hypot(dx, dy) dz = pre_z - z[i, 0] w = w * gauss_likelihood(dz, math.sqrt(Q[0, 0])) px[:, ip] = x[:, 0] pw[0, ip] = w pw = pw / pw.sum() # normalize x_est = px.dot(pw.T) p_est = calc_covariance(x_est, px, pw) N_eff = 1.0 / (pw.dot(pw.T))[0, 0] # Effective particle number if N_eff < NTh: px, pw = re_sampling(px, pw) return x_est, p_est, px, pwdef re_sampling(px, pw): """ low variance re-sampling """ w_cum = np.cumsum(pw) base = np.arange(0.0, 1.0, 1 / NP) re_sample_id = base + np.random.uniform(0, 1 / NP) indexes = [] ind = 0 for ip in range(NP): while re_sample_id[ip] > w_cum[ind]: ind += 1 indexes.append(ind) px = px[:, indexes] pw = np.zeros((1, NP)) + 1.0 / NP # init weight return px, pwdef plot_covariance_ellipse(x_est, p_est): # pragma: no cover p_xy = p_est[0:2, 0:2] eig_val, eig_vec = np.linalg.eig(p_xy) if eig_val[0] >= eig_val[1]: big_ind = 0 small_ind = 1 else: big_ind = 1 small_ind = 0 t = np.arange(0, 2 * math.pi + 0.1, 0.1) # eig_val[big_ind] or eiq_val[small_ind] were occasionally negative # numbers extremely close to 0 (~10^-20), catch these cases and set the # respective variable to 0 try: a = math.sqrt(eig_val[big_ind]) except ValueError: a = 0 try: b = math.sqrt(eig_val[small_ind]) except ValueError: b = 0 x = [a * math.cos(it) for it in t] y = [b * math.sin(it) for it in t] angle = math.atan2(eig_vec[1, big_ind], eig_vec[0, big_ind]) rot = Rot.from_euler('z', angle).as_matrix()[0:2, 0:2] fx = rot.dot(np.array([[x, y]])) px = np.array(fx[0, :] + x_est[0, 0]).flatten() py = np.array(fx[1, :] + x_est[1, 0]).flatten() plt.plot(px, py, "--r")def main(): print(__file__ + " start!!") time = 0.0 # RF_ID positions [x, y] rf_id = np.array([[10.0, 0.0], [10.0, 10.0], [0.0, 15.0], [-5.0, 20.0]]) # State Vector [x y yaw v]' x_est = np.zeros((4, 1)) x_true = np.zeros((4, 1)) px = np.zeros((4, NP)) # Particle store pw = np.zeros((1, NP)) + 1.0 / NP # Particle weight x_dr = np.zeros((4, 1)) # Dead reckoning # history h_x_est = x_est h_x_true = x_true h_x_dr = x_true while SIM_TIME >= time: time += DT u = calc_input() x_true, z, x_dr, ud = observation(x_true, x_dr, u, rf_id) x_est, PEst, px, pw = pf_localization(px, pw, z, ud) # store data history h_x_est = np.hstack((h_x_est, x_est)) h_x_dr = np.hstack((h_x_dr, x_dr)) h_x_true = np.hstack((h_x_true, x_true)) if show_animation: plt.cla() # for stopping simulation with the esc key. plt.gcf().canvas.mpl_connect( 'key_release_event', lambda event: [exit(0) if event.key == 'escape' else None]) for i in range(len(z[:, 0])): plt.plot([x_true[0, 0], z[i, 1]], [x_true[1, 0], z[i, 2]], "-k") plt.plot(rf_id[:, 0], rf_id[:, 1], "*k") plt.plot(px[0, :], px[1, :], ".r") plt.plot(np.array(h_x_true[0, :]).flatten(), np.array(h_x_true[1, :]).flatten(), "-b") plt.plot(np.array(h_x_dr[0, :]).flatten(), np.array(h_x_dr[1, :]).flatten(), "-k") plt.plot(np.array(h_x_est[0, :]).flatten(), np.array(h_x_est[1, :]).flatten(), "-r") plot_covariance_ellipse(x_est, PEst) plt.axis("equal") plt.grid(True) plt.pause(0.001)if __name__ == '__main__': main()到此这篇关于基于Python实现粒子滤波的文章就介绍到这了,更多相关Python实现粒子滤波内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
主要讲解Python调用OpenCV实现图像平滑,包括四个算法:均值滤波、方框滤波、高斯滤波和中值滤波.给图像增加噪声:importcv2importnumpy
基于OpenCV2.4.8和python2.7实现简单的手势识别。以下为基本步骤1.去除背景,提取手的轮廓2.RGB->YUV,同时计算直方图3.进行形态学滤波
本文介绍了Canvas文本转粒子效果的实现代码,分享给大家,希望对大家有所帮助,具体如下:通过粒子来绘制文本让人感觉很有意思,配合粒子的运动更会让这个效果更加酷
本文实例为大家分享了WPF实现3D粒子波浪效果的具体代码,供大家参考,具体内容如下实现效果如下:步骤:1、3D粒子类Particle.cspublicclass
本文实例为大家分享了python+opencv实现霍夫变换检测直线的具体代码,供大家参考,具体内容如下python+opencv实现高斯平滑滤波python+o