时间:2021-05-23
基于模板匹配算法识别PCB板型号
Python3、OpenCV
使用模板匹配算法,模板匹配是一种最原始、最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别对象物,模板匹配具有自身的局限性,主要表现在它只能进行平行移动,即原图像中的匹配目标不能发生旋转或大小变化。
事先准备好待检测PCB与其对应的模板:
子模版:
1、在整个图像区域发现与给定子图像匹配的小块区域
2、选取模板图像T(给定的子图像)
3、另外需要一个待检测的图像——源图像S
4、工作方法:在检测图像上,从左到右,从上到下计算模板图像与重叠, 子图像的匹配度,匹配程度越大,两者相同的可能性就越大。
OpenCV提供了6种模板匹配算法:
平方差匹配法CV_TM_SQDIFF;
归一化平方差匹配法CV_TM_SQDIFF_NORMED;
相关匹配法CV_TM_CCORR;
归一化相关匹配法CV_TM_CCORR_NORMED;
相关系数匹配法CV_TM_CCOEFF;
归一化相关系数匹配法CV_TM_CCOEFF_NORMED;
后面经过实验,我们主要是从以上的六种中选择了归一化相关系数匹配法CV_TM_CCOEFF_NORMED,基本原理公式为:
需要完整代码以及图片素材的,请留下评论可与博主进行联系。
以上就是Opencv+Python识别PCB板图片的步骤的详细内容,更多关于Opencv+Python识别PCB板的资料请关注其它相关文章!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建。于是迫不及待的想体验一下opencv的人脸识别,如下文。必备知识Haar-
本文采用OpenCV3和Python3来实现静态图片的人脸识别,采用的是Haar文件级联。首先需要将OpenCV3源代码中找到data文件夹下面的haarcas
运动模糊:由于相机和物体之间的相对运动造成的模糊,又称为动态模糊Opencv+Python实现运动模糊,主要用到的函数是cv2.filter2D():#codi
利用Python+opencv实现从摄像头捕获图像,识别其中的人眼/人脸,并打上马赛克。系统环境:Windows7+Python3.6.3+opencv3.4.
最近终于找到一个好的方法,使用Python的OpenCV模块识别滑动验证码的缺口,可以将滑动验证码中的缺口识别出来了。测试使用如下两张图片:target.jpg