时间:2021-05-23
膨胀(Dilating) (或)
(1)将图像 A 与任意形状的内核 (B),通常为正方形或圆形,进行卷积。
(2)内核 B 有一个可定义的 锚点, 通常定义为内核中心点。
(3)进行膨胀操作时,将内核 B 划过图像A,将内核 B 覆盖区域的最大相素值提取,并代替锚点位置的相素。显然,这一最大化操作将会导致图像中的亮区开始”扩展” (因此有了术语膨胀 dilation )。
以3*3的内核为例:
腐蚀(Eroding) (与)
(1)腐蚀在形态学操作家族里是膨胀操作的孪生姐妹。它提取的是内核覆盖下的相素最小值。
(2)进行腐蚀操作时,将内核 B 划过图像,将内核 B 覆盖区域的最小相素值提取,并代替锚点位置的相素。
值得注意的是:腐蚀和膨胀是对白色部分(高亮部分)而言的,不是黑色部分。 膨胀就是图像中的高亮部分进行膨胀,“邻域扩张”,效果图拥有比原图更大的高亮区域。腐蚀就是原图中高亮部分被腐蚀,“邻域被蚕食”,效果图拥有比原图更小的高亮区域。
源代码:
import cv2 as cvimport numpy as npdef erode_demo(image): # print(image.shape) gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU) #cv.imshow("binary", binary) kernel = cv.getStructuringElement(cv.MORPH_RECT, (15, 15))#定义结构元素的形状和大小 dst = cv.erode(binary, kernel)#腐蚀操作 cv.imshow("erode_demo", dst)def dilate_demo(image): #print(image.shape) gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU) #cv.imshow("binary", binary) kernel = cv.getStructuringElement(cv.MORPH_RECT, (5, 5))#定义结构元素的形状和大小 dst = cv.dilate(binary, kernel)#膨胀操作 cv.imshow("dilate_demo", dst)src = cv.imread("F:/images/test01.png")cv.namedWindow("input image", cv.WINDOW_AUTOSIZE)cv.imshow("input image", src)erode_demo(src)dilate_demo(src)cv.waitKey(0)cv.destroyAllWindows()运行结果:
到此这篇关于OpenCV+python实现膨胀和腐蚀的示例的文章就介绍到这了,更多相关OpenCV 膨胀和腐蚀内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
语言:python+opencv为什么使用图像腐蚀和图像膨胀如图,使用图像腐蚀进行去噪,但是为压缩噪声。对腐蚀过的图像,进行膨胀处理,可以去除噪声,并保持原样形
形态学里把腐蚀和膨胀单独拿了出来,其他操作(保括膨胀和腐蚀的组合操作)都叫形态学变换。opencv里有包:cv2.morphologyEx()morpholog
python+OpenCV图像礼帽图像礼帽也叫图像顶帽礼帽图像=原始图像-开运算图像得到噪声图像开运算:先腐蚀再膨胀使用对象:二值图像使用方法:morpholo
运动模糊:由于相机和物体之间的相对运动造成的模糊,又称为动态模糊Opencv+Python实现运动模糊,主要用到的函数是cv2.filter2D():#codi
基本思路斑马线检测通过opencv图像处理来进行灰度值转换、高斯滤波去噪、阈值处理、腐蚀和膨胀后对图像进行轮廓检测,通过判断车辆和行人的位置,以及他们之间的距离