时间:2021-05-23
Canny边缘检测器是一种被广泛使用的算法,并被认为是边缘检测最优的算法,该方法使用了比高斯差分算法更复杂的技巧,如多向灰度梯度和滞后阈值化。
Canny边缘检测器算法基本步骤:
Opencv使用Canny边缘检测相对简单,代码如下:
import cv2import numpy as npimg = cv2.imread("hammer.jpg", 0)cv2.imwrite("canny.jpg", cv2.Canny(img, 200, 300))cv2.imshow("canny", cv2.imread("canny.jpg"))cv2.waitKey()cv2.destroyAllWindows()运行结果:
Canny函数的原型为
cv2.Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient ]]])必要参数:
第一个参数是需要处理的原图像,该图像必须为单通道的灰度图;
第二个参数是滞后阈值1;
第三个参数是滞后阈值2。
轮廓检测主要由cv2.findContours函数实现的。
函数的原型为
函数参数
第一个参数是寻找轮廓的图像;
第二个参数表示轮廓的检索模式,有四种(本文介绍的都是新的cv2接口):
第三个参数method为轮廓的逼近方法
返回值
如:image, contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
image:是原图像
contours:图像的轮廓,以列表的形式表示,每个元素都是图像中的一个轮廓。
hier:相应轮廓之间的关系。这是一个ndarray,其中的元素个数和轮廓个数相同,每个轮廓contours[i]对应4个hierarchy元素hierarchy[i][0] ~hierarchy[i][3],分别表示后一个轮廓、前一个轮廓、父轮廓、内嵌轮廓的索引编号,如果没有对应项,则该值为负数。
原图:
示例一
import cv2import numpy as npimg = cv2.pyrDown(cv2.imread("hammer.jpg", cv2.IMREAD_UNCHANGED))# threshold 函数对图像进行二化值处理,由于处理后图像对原图像有所变化,因此img.copy()生成新的图像,cv2.THRESH_BINARY是二化值ret, thresh = cv2.threshold(cv2.cvtColor(img.copy(), cv2.COLOR_BGR2GRAY), 127, 255, cv2.THRESH_BINARY)# findContours函数查找图像里的图形轮廓# 函数参数thresh是图像对象# 层次类型,参数cv2.RETR_EXTERNAL是获取最外层轮廓,cv2.RETR_TREE是获取轮廓的整体结构# 轮廓逼近方法# 输出的返回值,image是原图像、contours是图像的轮廓、hier是层次类型image, contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)for c in contours: # 轮廓绘制方法一 # boundingRect函数计算边框值,x,y是坐标值,w,h是矩形的宽和高 x, y, w, h = cv2.boundingRect(c) # 在img图像画出矩形,(x, y), (x + w, y + h)是矩形坐标,(0, 255, 0)设置通道颜色,2是设置线条粗度 cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2) # 轮廓绘制方法二 # 查找最小区域 rect = cv2.minAreaRect(c) # 计算最小面积矩形的坐标 box = cv2.boxPoints(rect) # 将坐标规范化为整数 box = np.int0(box) # 绘制矩形 cv2.drawContours(img, [box], 0, (0, 0, 255), 3) # 轮廓绘制方法三 # 圆心坐标和半径的计算 (x, y), radius = cv2.minEnclosingCircle(c) # 规范化为整数 center = (int(x), int(y)) radius = int(radius) # 勾画圆形区域 img = cv2.circle(img, center, radius, (0, 255, 0), 2)# # 轮廓绘制方法四# 围绕图形勾画蓝色线条cv2.drawContours(img, contours, -1, (255, 0, 0), 2)# 显示图像cv2.imshow("contours", img)cv2.waitKey()cv2.destroyAllWindows()运行结果如图所示:
示例二
import cv2import numpy as npimg = cv2.pyrDown(cv2.imread("hammer.jpg", cv2.IMREAD_UNCHANGED))ret, thresh = cv2.threshold(cv2.cvtColor(img.copy(), cv2.COLOR_BGR2GRAY) , 127, 255, cv2.THRESH_BINARY)# findContours函数查找图像里的图形轮廓# 函数参数thresh是图像对象# 层次类型,参数cv2.RETR_EXTERNAL是获取最外层轮廓,cv2.RETR_TREE是获取轮廓的整体结构# 轮廓逼近方法# 输出的返回值,image是原图像、contours是图像的轮廓、hier是层次类型image, contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)# 创建新的图像blackblack = cv2.cvtColor(np.zeros((img.shape[1], img.shape[0]), dtype=np.uint8), cv2.COLOR_GRAY2BGR)for cnt in contours: # 轮廓周长也被称为弧长。可以使用函数 cv2.arcLength() 计算得到。这个函数的第二参数可以用来指定对象的形状是闭合的(True) ,还是打开的(一条曲线) epsilon = 0.01 * cv2.arcLength(cnt, True) # 函数approxPolyDP来对指定的点集进行逼近,cnt是图像轮廓,epsilon表示的是精度,越小精度越高,因为表示的意思是是原始曲线与近似曲线之间的最大距离。 # 第三个函数参数若为true,则说明近似曲线是闭合的,它的首位都是相连,反之,若为false,则断开。 approx = cv2.approxPolyDP(cnt, epsilon, True) # convexHull检查一个曲线的凸性缺陷并进行修正,参数cnt是图像轮廓。 hull = cv2.convexHull(cnt) # 勾画图像原始的轮廓 cv2.drawContours(black, [cnt], -1, (0, 255, 0), 2) # 用多边形勾画轮廓区域 cv2.drawContours(black, [approx], -1, (255, 255, 0), 2) # 修正凸性缺陷的轮廓区域 cv2.drawContours(black, [hull], -1, (0, 0, 255), 2)# 显示图像cv2.imshow("hull", black)cv2.waitKey()cv2.destroyAllWindows()运行结果如图所示:
参考资料:OpenCV 3计算机视觉 Python语言实现第二版
到此这篇关于Python使用Opencv实现边缘检测以及轮廓检测的实现的文章就介绍到这了,更多相关Python 边缘检测内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
python+opencv车道线检测(简易实现),供大家参考,具体内容如下技术栈:python+opencv实现思路:1、canny边缘检测获取图中的边缘信息;
最近自己在做一个有关图像处理的小项目,涉及到图像的边缘检测、直线检测、轮廓检测以及角点检测等,本文首先介绍图像的边缘检测,使用的是Canny边缘检测算法,具体代
最近在OpenCV-Python接口中使用cv2.findContours()函数来查找检测物体的轮廓。根据网上的教程,PythonOpenCV的轮廓提取函数会
参照opencv官网例程写了一个基于python的行人检测程序,实现了和自带检测器基本一致的检测效果。网址:https://docs.opencv.org/3.
图像轮廓Contours:轮廓轮廓是将没有连着一起的边缘连着一起。边缘检测检测出边缘,边缘有些未连接在一起。注意问题1.对象为二值图像,首先进行阈值分割或者边缘