时间:2021-05-20
本文实例为大家分享了MFC实现连连看游戏消子算法的具体代码,供大家参考,具体内容如下
两个位置的图片能否消除,有三种情况:
1.一条直线连接,这种也是最简单的一种消除方法
2.两条直线消除,即经过一个拐点。
两个顶点经过两条直线连接有两种情况,即两个拐点分两种情况。
bool OneCornerLink(CPoint p1, CPoint p2) { conner1.x = conner1.y = -1; conner2.x = conner2.y = -1; int min_x = min(p1.x, p2.x); int max_x = max(p1.x, p2.x); int min_y = min(p1.y, p2.y); int max_y = max(p1.y, p2.y); // 拐点1 int x1 = p1.x; int y1 = p2.y; //拐点2 int x2 = p2.x; int y2 = p1.y; BOOL b = true; if (game->map[x1][y1] != 0 && game->map[x2][y2] != 0) { b = false; } else { if (game->map[x1][y1] == 0) // 拐点1位置无图片 { for (int i = min_x + 1; i < max_x; i++) { if (game->map[i][y1] != 0) { b = false; break; } } for (int i = min_y + 1; i < max_y; i++) { if (game->map[x1][i] != 0) { b = false; break; } } if (b) { conner1.x = x1; conner1.y = y1; return b; } } if (game->map[x2][y2] == 0) // 拐点2位置无图片 { b = true; for (int i = min_x + 1; i < max_x; i++) { if (game->map[i][y2] != 0) { b = false; break; } } for (int i = min_y + 1; i < max_y; i++) { if (game->map[x2][i] != 0) { b = false; break; } } if (b) { conner1.x = x2; conner1.y = y2; return b; } } } return b;}3.三条直线消除,即经过两个拐点。
这是可以通过横向扫描和纵向扫描,扫描的时候可以得到连个拐点,判断两个顶点经过这两个拐点后是否能消除
bool TwoCornerLink(CPoint p1, CPoint p2) { conner1.x = conner1.y = -1; conner2.x = conner2.y = -1; int min_x = min(p1.x, p2.x); int max_x = max(p1.x, p2.x); int min_y = min(p1.y, p2.y); int max_y = max(p1.y, p2.y); bool b; for (int i = 0; i < MAX_Y; i++) // 扫描行 { b = true; if (game->map[p1.x][i] == 0 && game->map[p2.x][i] == 0) // 两个拐点位置无图片 { for (int j = min_x + 1; j < max_x; j++) // 判断连个拐点之间是否可以连接 { if (game->map[j][i] != 0) { b = false; break; } } if (b) { int temp_max = max(p1.y, i); int temp_min = min(p1.y, i); for (int j = temp_min + 1; j < temp_max; j++) // 判断p1和它所对应的拐点之间是否可以连接 { if (game->map[p1.x][j] != 0) { b = false; break; } } } if (b) { int temp_max = max(p2.y, i); int temp_min = min(p2.y, i); for (int j = temp_min + 1; j < temp_max; j++) // 判断p2和它所对应的拐点之间是否可以连接 { for (int j = temp_min + 1; j < temp_max; j++) { if (game->map[p2.x][j] != 0) { b = false; break; } } } } if (b) // 如果存在路线,返回true { conner1.x = p1.x; conner1.y = i; conner2.x = p2.x; conner2.y = i; return b; } } }// 扫描行结束 for (int i = 0; i < MAX_X; i++) // 扫描列 { b = true; if (game->map[i][p1.y] == 0 && game->map[i][p2.y] == 0) // 连个拐点位置无图片 { for (int j = min_y + 1; j < max_y; j++) // 两个拐点之间是否可以连接 { if (game->map[i][j] != 0) { b = false; break; } } if (b) { int temp_max = max(i, p1.x); int temp_min = min(i, p1.x); for (int j = temp_min + 1; j < temp_max; j++) // 判断p1和它所对应的拐点之间是否可以连接 { if (game->map[j][p1.y] != 0) { b = false; break; } } } if (b) { int temp_max = max(p2.x, i); int temp_min = min(p2.x, i); for (int j = temp_min + 1; j < temp_max; j++) { if (game->map[j][p2.y] != 0) { b = false; break; } } } if (b) // 如果存在路线,返回true { conner1.y = p1.y; conner1.x = i; conner2.y = p2.y; conner2.x = i; return b; } } } // 扫描列结束 return b;}完整源码已上传至我的GitHub
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例为大家分享了js实现连连看游戏的具体代码,供大家参考,具体内容如下连连看body{text-align:center;}.text{text-align
向大家分享一款如何实现js版连连看游戏,如下图所示:首先看一下html的布局方式在index.html文件中:复制代码代码如下:连连看分数0时间0css文件夹下
个人兴趣,用python实现连连看的辅助程序,总结实现过程及知识点。总体思路1、获取连连看程序的窗口并前置2、游戏界面截图,将每个一小图标切图,并形成由小图标组
今天看完了李刚老师的《疯狂Android讲义》一书中的第18章《疯狂连连看》,从而学会了如何编写一个简单的Android疯狂连连看游戏。开发这个流行的小游戏,难
功能:为连连看游戏提供连接算法说明:模块中包含一个Point类,该类是游戏的基本单元“点”,该类包含属性:x,y,value。其中x,y代表了该点的坐标,val