时间:2021-05-20
给定一个整数序列,计算其中的最长递增子序列的长度,这是一个典型的动态规划的算法。
比如8个整数的序列 186 186 150 200 160 130 197 200,最长递增子序列是 150 160 197 200, 长度为4。
想要解决此问题,可以把这个大问题分解为小问题,依次考虑每个数,计算出包含该数数和该数之前的所有数的最长递增子序列的长度,计算出的长度值作为该数的对应值记录下来,最后可以得到这8个数对应的长度值序列,也是8个数,找到这8个数中的最大值就是所有书的最长递增子序列的长度。
或者也可以这样想,想要计算8个数的最长递增子序列的长度有难度,不如先考虑最简单的情况。只有一个数的时候,最长递增子序列长度就是1;当有两个数时,只考虑第一个数和它以前的数的最长递增子序列就是1,考虑第二个数时只需要找到它之前的所有数中比第二个数小的所有数中最长递增子序列的长度最大值然后加一 ,就是第二个数的长度。
下面给出实现代码:
#include <iostream>#include <vector>#include <iterator>using namespace std;int findLoogestIncreaseSeq(vector<int> &vect){ int len = 0; int *count = new int[vect.size()]; for (int i = 0; i < vect.size(); i++) count[i] = 1; for (int i = 0; i < vect.size(); i++) { for (int j = i - 1; j >= 0; j--) { if (vect[j] < vect[i] && count[j] >= count[i]) { count[i] = count[j] + 1; } } if (count[i] > len) len = count[i]; } delete [] count; return len;}int main(){ vector<int> vect; int temp; while (cin >> temp) { vect.push_back(temp); } cout << findLoogestIncreaseSeq(vect) << endl; return 0;}补充知识:C++ 求最长递增子序列(动态规划)
i 0 1 2 3 4 5 6 7 8 a[i] 1 4 7 2 5 8 3 6 9 lis[i] 1 2 3 2 3 4 3 4 5时间复杂度为n^2的算法:
//求最长递增子序列//2019/2/28#include<iostream>using namespace std;int LIS(int a[],int N){ int lis[100] = {}; for(int i =0;i<N;i++)//给每一个数的lis赋初值为1 { lis[i]=1; } for(int i = 1;i<N;i++) { for(int j =0;j<i;j++) { if(a[j]<a[i]&&lis[j]<lis[i]+1) //找出当前元素前面比它小的元素,比较其lis值 lis[i] = lis[j] + 1; } } int max = lis[0]; for(int i =1;i<N;i++) { if(lis[i]>max) max = lis[i]; //找出lis数组中最大值,即最长有序子序列的长度 } return max;}int main(){ int N; int a[100]; while(cin>>N) { for(int i = 0;i<N;i++) cin>>a[i]; cout<<LIS(a,N)<<endl; } return 0;}以上这篇C++计算整数序列的最长递增子序列的长度操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例展示了C语言实现最长递增子序列问题的解决方法。分享给大家供大家参考。具体方法如下:问题描述:给定一个序列,找出其最长递增子序列长度。比如输入1375输出
今天遇到了一个求最长递增子序列的问题,看了之后就尝试着用Java实现了一下,关于什么是最长递增子序列,这里就不在赘述,可以百度或者Google之,以下为实现的代
存储扩展算法n2编程c写一个时间复杂度尽可能低的程序,求一个一维数组(N个元素)中的最长递增子序列的长度。例如:在序列1,-1,2,-3,4,-5,6,-7中,
Python最长递增子序列代码如下所示:deflis(arr):n=len(arr)m=[0]*nforxinrange(n-2,-1,-1):foryinra
Python递增子序列的更大值总和Python递增子序列的更大值总和代码如下所示:arr=[1,101,2,3,100,4,5]msis=[elemforele