时间:2021-05-22
通过 1至10 阶来拟合对比 均方误差及R评分,可以确定最优的“最大阶数”。
import numpy as npimport matplotlib.pyplot as pltfrom sklearn.preprocessing import PolynomialFeaturesfrom sklearn.linear_model import LinearRegression,Perceptronfrom sklearn.metrics import mean_squared_error,r2_scorefrom sklearn.model_selection import train_test_split X = np.array([-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10]).reshape(-1, 1)y = np.array(2*(X**4) + X**2 + 9*X + 2)#y = np.array([300,500,0,-10,0,20,200,300,1000,800,4000,5000,10000,9000,22000]).reshape(-1, 1) x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.3)rmses = []degrees = np.arange(1, 10)min_rmse, min_deg,score = 1e10, 0 ,0 for deg in degrees: # 生成多项式特征集(如根据degree=3 ,生成 [[x,x**2,x**3]] ) poly = PolynomialFeatures(degree=deg, include_bias=False) x_train_poly = poly.fit_transform(x_train) # 多项式拟合 poly_reg = LinearRegression() poly_reg.fit(x_train_poly, y_train) #print(poly_reg.coef_,poly_reg.intercept_) #系数及常数 # 测试集比较 x_test_poly = poly.fit_transform(x_test) y_test_pred = poly_reg.predict(x_test_poly) #mean_squared_error(y_true, y_pred) #均方误差回归损失,越小越好。 poly_rmse = np.sqrt(mean_squared_error(y_test, y_test_pred)) rmses.append(poly_rmse) # r2 范围[0,1],R2越接近1拟合越好。 r2score = r2_score(y_test, y_test_pred) # degree交叉验证 if min_rmse > poly_rmse: min_rmse = poly_rmse min_deg = deg score = r2score print('degree = %s, RMSE = %.2f ,r2_score = %.2f' % (deg, poly_rmse,r2score)) fig = plt.figure()ax = fig.add_subplot(111)ax.plot(degrees, rmses)ax.set_yscale('log')ax.set_xlabel('Degree')ax.set_ylabel('RMSE')ax.set_title('Best degree = %s, RMSE = %.2f, r2_score = %.2f' %(min_deg, min_rmse,score)) plt.show()因为因变量 Y = 2*(X**4) + X**2 + 9*X + 2 ,自变量和因变量是完整的公式,看图很明显,degree >=4 的都符合,拟合函数都正确。(RMSE 最小,R平方非负且接近于1,则模型最好)
如果将 Y 值改为如下:
y = np.array([300,500,0,-10,0,20,200,300,1000,800,4000,5000,10000,9000,22000]).reshape(-1, 1)degree=3 是最好的,且 r 平方也最接近于1(注意:如果 R 平方为负数,则不准确,需再次测试。因样本数据较少,可能也会判断错误)。
以上这篇Python 确定多项式拟合/回归的阶数实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
一、多项式拟合多项式拟合的话,用的的是numpy这个库的polyfit这个函数。那么多项式拟合,最简单的当然是,一次多项式拟合了,就是线性回归。直接看代码吧im
PyTorch基础入门三:PyTorch搭建多项式回归模型1)理论简介对于一般的线性回归模型,由于该函数拟合出来的是一条直线,所以精度欠佳,我们可以考虑多项式回
本文实例讲述了Python实现的多项式拟合功能。分享给大家供大家参考,具体如下:#-*-coding:utf-8-*-#!python2importnumpya
本文实例讲述了Java实现的n阶曲线拟合功能。分享给大家供大家参考,具体如下:前面一篇文章Java实现求解一元n次多项式的方法,能解多项式以后,还需要利用那个类
本文实例讲述了Java实现求解一元n次多项式的方法。分享给大家供大家参考,具体如下:项目需要做趋势预测,采用线性拟合、2阶曲线拟合和指数拟合的算法,各种线性拟合