时间:2021-05-22
首先,看看本文所面向的应用场景:我们有一个数据集df,现在想统计数据中某一列每个元素的出现次数。这个在我们前面文章《如何画直方图》中已经介绍了方法,利用value_counts()就可以实现(具体回看文章)
但是,现在,我们考虑另外一个场景,我们假如要想统计其中两列元素出现次数呢?举个栗子:
在df数据集中,如果我们想统计A、B两列的元素的出现情况,也就是说,得到如下表。
从上面的最后一列可以看到,在A、B两列中,1 2 出现了2次,1 4 出现1次 ,1 6出现1次,2 3出现了2次, 2 4 出现1次, 3 1出现了1次
具体实现的代码:
import pandas as pddf=pd.DataFrame([[1,2,2],[1,4,5],[1,2,4],[1,6,3],[2,3,1],[2,4,1],[2,3,5],[3,1,1]],columns=['A','B','C'])gp=df.groupby(by=['A','B'])gp.size()所以,如果想统计更多列,只要在groupby()中的by参数添加就可以,例如统计3列。
gp=df.groupby(by=['A','B','C'])由gp.size()得到的是可以mulitiindex Series。
下面,要转化成DataFrame的结构。
newdf=gp.size()newdf.reset_index(name='times')其中name中参数就是我们可以为最后一列添加新的名字,例如这里的“times”
这个时候newdf已经是DataFrame的类型了。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
Pandas的apply函数概念(图解)实例1:怎样对数值按分组的归一化实例2:怎样取每个分组的TOPN数据到此这篇关于Pandas对每个分组应用apply函数
详解python里使用正则表达式的分组命名方式分组匹配的模式,可以通过groups()来全部访问匹配的元组,也可以通过group()函数来按分组方式来访问,但是
不得不说使用python库matplotlib绘图确实比较丑,但使用起来还算是比较方便,做自己的小小研究可以使用。这里记录一些统计作图方法,包括pandas作图
一、pandas分组1、分组运算过程:split->apply->combine拆分:进行分组的根据应用:每个分组运行的计算规则合并:把每个分组的计算结果合并起
本文主要介绍了pandas统计重复值次数的方法实现,分享给大家,具体如下:frompandasimportDataFramedf=DataFrame({'key