时间:2021-05-22
可以通过model.state_dict()或者model.named_parameters()函数查看现在的全部可训练参数(包括通过继承得到的父类中的参数)
可示例代码如下:
params = list(model.named_parameters()) (name, param) = params[28] print(name) print(param.grad) print('-------------------------------------------------') (name2, param2) = params[29] print(name2) print(param2.grad) print('----------------------------------------------------') (name1, param1) = params[30] print(name1) print(param1.grad)以上这篇pytorch 实现查看网络中的参数就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
pytorch中我们有时候可能需要设定某些变量是参与训练的,这时候就需要查看哪些是可训练参数,以确定这些设置是成功的。pytorch中model.paramet
深度学习中,模型训练完后,查看模型的参数量和浮点计算量,在此记录下:1THOP在pytorch中有现成的包thop用于计算参数数量和FLOP,首先安装thop:
在迁移学习finetune时我们通常需要冻结前几层的参数不参与训练,在Pytorch中的实现如下:classModel(nn.Module):def__init
pytorch动态网络+权值共享pytorch以动态图著称,下面以一个栗子来实现动态网络和权值共享技术:#-*-coding:utf-8-*-importran
Pytorch中,变量参数,用numel得到参数数目,累加defget_parameter_number(net):total_num=sum(p.numel(