时间:2021-05-22
假设我们已经知道梯度法——最速下降法的原理。
现给出一个算例:
如果人工直接求解:
现给出Python求解过程:
import numpy as npfrom sympy import *import mathimport matplotlib.pyplot as pltimport mpl_toolkits.axisartist as axisartist# 定义符号x1, x2, t = symbols('x1, x2, t')def func(): # 自定义一个函数 return pow(x1, 2) + 2 * pow(x2, 2) - 2 * x1 * x2 - 2 * x2def grad(data): # 求梯度向量,data=[data1, data2] f = func() grad_vec = [diff(f, x1), diff(f, x2)] # 求偏导数,梯度向量 grad = [] for item in grad_vec: grad.append(item.subs(x1, data[0]).subs(x2, data[1])) return graddef grad_len(grad): # 梯度向量的模长 vec_len = math.sqrt(pow(grad[0], 2) + pow(grad[1], 2)) return vec_lendef zhudian(f): # 求得min(t)的驻点 t_diff = diff(f) t_min = solve(t_diff) return t_mindef main(X0, theta): f = func() grad_vec = grad(X0) grad_length = grad_len(grad_vec) # 梯度向量的模长 k = 0 data_x = [0] data_y = [0] while grad_length > theta: # 迭代的终止条件 k += 1 p = -np.array(grad_vec) # 迭代 X = np.array(X0) + t*p t_func = f.subs(x1, X[0]).subs(x2, X[1]) t_min = zhudian(t_func) X0 = np.array(X0) + t_min*p grad_vec = grad(X0) grad_length = grad_len(grad_vec) print('grad_length', grad_length) print('坐标', X0[0], X0[1]) data_x.append(X0[0]) data_y.append(X0[1]) print(k) # 绘图 fig = plt.figure() ax = axisartist.Subplot(fig, 111) fig.add_axes(ax) ax.axis["bottom"].set_axisline_style("-|>", size=1.5) ax.axis["left"].set_axisline_style("->", size=1.5) ax.axis["top"].set_visible(False) ax.axis["right"].set_visible(False) plt.title(r'$Gradient \ method - steepest \ descent \ method$') plt.plot(data_x, data_y, label=r'$f(x_1,x_2)=x_1^2+2 \cdot x_2^2-2 \cdot x_1 \cdot x_2-2 \cdot x_2$') plt.legend() plt.scatter(1, 1, marker=(5, 1), c=5, s=1000) plt.grid() plt.xlabel(r'$x_1$', fontsize=20) plt.ylabel(r'$x_2$', fontsize=20) plt.show()if __name__ == '__main__': # 给定初始迭代点和阈值 main([0, 0], 0.00001)最终结果图如下所示:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
在一般问题的优化中,最速下降法和共轭梯度法都是非常有用的经典方法,但最速下降法往往以”之”字形下降,速度较慢,不能很快的达到最优值,共轭梯度法则优于最速下降法,
共轭梯度法是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点
对于一个多元函数,用最速下降法(又称梯度下降法)求其极小值的迭代格式为其中为负梯度方向,即最速下降方向,αkαk为搜索步长。一般情况下,最优步长αkαk的确定要
本文实例为大家分享了python实现最速下降法的具体代码,供大家参考,具体内容如下代码:fromsympyimport*importnumpyasnpdefba
本文实例为大家分享了python实现梯度下降法的具体代码,供大家参考,具体内容如下使用工具:Python(x,y)2.6.6运行环境:Windows10问题:求