Python基于numpy模块实现回归预测

时间:2021-05-22

代码如下

import numpy as npfrom matplotlib import pyplot as plt# 用numpy生成数据t ,yt = np.arange(1,10,1)y = 0.9 * t + np.sin(t)model = np.polyfit(t, y ,deg=1) # np.polyfit是numpy提供的加分分析方法,deg=1,指定模型为1阶的,返回值model为获得的模型t2 = np.arange(-2,12,0.5) # 再生成一个间隔为0.5的序列ypredict = np.polyval(model, t2) # 由np.polyval预测y值序列plt.plot(t, y, "o", t2, ypredict, 'x')plt.show()

上面的一段代码利用numpy生成数据序列,并实现了1阶回归,并画出预测效果图,图形如下:

将代码改一下,实现2阶、3阶回归预测,只需要model = np.polyfit(t, y, deg =2)即可,同理3阶模型就把deg改为3即可。

2阶效果图和3阶效果图分别如下:

需要说明的是,并不是拟合的阶数越高,模型越好,本例使用2阶拟合效果比较好,如果使用3阶,会出现“过拟合”

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章