时间:2021-05-22
等高线图是在地理课中讲述山峰山谷时绘制的图形,在机器学习中也会被用在绘制梯度下降算法的图形中。
因为等高线的图有三个信息:x,y以及x,y所对应的高度值。
这个高度值的计算我们用一个函数来表述:
计算x,y坐标对应的高度值def f(x, y): return (1-x/2+x**5+y**3) * np.exp(-x**2-y**2)这个函数看起来挺复杂的,但我们这里只是为了能够获得一个高度值,因此其中函数代表什么意义不用关心,只要知道输入一个x,y,输出一个高度值就可以了。
要画出等高线,核心函数是plt.contourf(),但在这个函数中输入的参数是x,y对应的网格数据以及此网格对应的高度值,因此还需要调用np.meshgrid(x,y)把x,y值转换成网格数据才行,这样完整的代码如下:
画等高线的代码如下:
import numpy as npimport pandas as pdimport matplotlib.pyplot as plt# 计算x,y坐标对应的高度值def f(x, y): return (1-x/2+x**5+y**3) * np.exp(-x**2-y**2)# 生成x,y的数据n = 256x = np.linspace(-3, 3, n)y = np.linspace(-3, 3, n)# 把x,y数据生成mesh网格状的数据,因为等高线的显示是在网格的基础上添加上高度值X, Y = np.meshgrid(x, y)# 填充等高线plt.contourf(X, Y, f(X, Y))# 显示图表plt.show()上述代码显示的图形为:
这颜色有点太冷了,我们想显示热力图,那只要在plt.contourf()函数中添加属性cmap=plt.cm.hot就能显示热力图,其中cmap代表为color map,我们把color map映射成hot(热力图),此处关键代码为:
# 填充等高线plt.contourf(X, Y, f(X, Y), cmap=plt.cm.hot)显示的图为:
是否显示得挺热的。:)
上面是用plt.contourf()填充了等高线,但还有一种方式是可以直接显示等高线,而不是填充的方式,例如:
C = plt.contour(X, Y, f(X, Y), 20)这里20代表的是显示等高线的密集程度,数值越大,画的等高线数就越多。
这样显示的图形为:
当然,如果我们不调用前面的plt.contourf()函数,则就会直接显示等高线。
最后我们想在等高线中添加上标注值:
plt.clabel(C, inline=True, fontsize=12)显示的图为:
完整的代码为:
import numpy as npimport pandas as pdimport matplotlib.pyplot as plt# 计算x,y坐标对应的高度值def f(x, y): return (1-x/2+x**5+y**3) * np.exp(-x**2-y**2)# 生成x,y的数据n = 256x = np.linspace(-3, 3, n)y = np.linspace(-3, 3, n)# 把x,y数据生成mesh网格状的数据,因为等高线的显示是在网格的基础上添加上高度值X, Y = np.meshgrid(x, y)# 填充等高线plt.contourf(X, Y, f(X, Y), 20, cmap=plt.cm.hot)# 添加等高线C = plt.contour(X, Y, f(X, Y), 20)plt.clabel(C, inline=True, fontsize=12)# 显示图表plt.show()总结
以上就是本文关于用matplotlib画等高线图详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:
Python通过matplotlib绘制动画简单实例
Python的地形三维可视化Matplotlib和gdal使用实例
python学习之matplotlib绘制散点图实例
如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
Matplotlib简介Matplotlib是非常强大的python画图工具Matplotlib可以画图线图、散点图、等高线图、条形图、柱形图、3D图形、图形动
很多时候我们数据处理的时候要画坐标图,下面我用第三方库matplotlib以及scipy绘制光滑的曲线图需要安装的库有matplotlib,scipy,nump
本文实例讲述了Python基于Matplotlib库简单绘制折线图的方法。分享给大家供大家参考,具体如下:Matplotlib画折线图,有一些离散点,想看看这些
Python绘制箱线图主要用matplotlib库里pyplot模块里的boxplot()函数。plt.boxplot()参数详解plt.pie(x,#指定要绘
用Matplotlib画三维图最基本的三维图是由(x,y,z)三维坐标点构成的线图与散点图,可以用ax.plot3D和ax.scatter3D函数来创建,默认情