时间:2021-05-22
Python 3 利用 Dlib 19.7 实现摄像头人脸检测特征点标定
0.引言
利用python开发,借助Dlib库捕获摄像头中的人脸,进行实时特征点标定;
图1 工程效果示例(gif)
图2 工程效果示例(静态图片)
(实现比较简单,代码量也比较少,适合入门或者兴趣学习。)
1.开发环境
python: 3.6.3
dlib: 19.7
OpenCv, numpy
import dlib # 人脸识别的库dlibimport numpy as np # 数据处理的库numpyimport cv2 # 图像处理的库OpenCv2.源码介绍
其实实现很简单,主要分为两个部分:摄像头调用+人脸特征点标定
2.1 摄像头调用
介绍下opencv中摄像头的调用方法;
利用 cap = cv2.VideoCapture(0) 创建一个对象;
(具体可以参考官方文档)
# 2018-2-26# By TimeStamp# cnblogs: http:///coneypo/Dlib_face_detection_from_cameraimport dlib #人脸识别的库dlibimport numpy as np #数据处理的库numpyimport cv2 #图像处理的库OpenCv# dlib预测器detector = dlib.get_frontal_face_detector()predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')# 创建cv2摄像头对象cap = cv2.VideoCapture(0)# cap.set(propId, value)# 设置视频参数,propId设置的视频参数,value设置的参数值cap.set(3, 480)# 截图screenshoot的计数器cnt = 0# cap.isOpened() 返回true/false 检查初始化是否成功while(cap.isOpened()): # cap.read() # 返回两个值: # 一个布尔值true/false,用来判断读取视频是否成功/是否到视频末尾 # 图像对象,图像的三维矩阵 flag, im_rd = cap.read() # 每帧数据延时1ms,延时为0读取的是静态帧 k = cv2.waitKey(1) # 取灰度 img_gray = cv2.cvtColor(im_rd, cv2.COLOR_RGB2GRAY) # 人脸数rects rects = detector(img_gray, 0) #print(len(rects)) # 待会要写的字体 font = cv2.FONT_HERSHEY_SIMPLEX # 标68个点 if(len(rects)!=0): # 检测到人脸 for i in range(len(rects)): landmarks = np.matrix([[p.x, p.y] for p in predictor(im_rd, rects[i]).parts()]) for idx, point in enumerate(landmarks): # 68点的坐标 pos = (point[0, 0], point[0, 1]) # 利用cv2.circle给每个特征点画一个圈,共68个 cv2.circle(im_rd, pos, 2, color=(0, 255, 0)) # 利用cv2.putText输出1-68 cv2.putText(im_rd, str(idx + 1), pos, font, 0.2, (0, 0, 255), 1, cv2.LINE_AA) cv2.putText(im_rd, "faces: "+str(len(rects)), (20,50), font, 1, (0, 0, 255), 1, cv2.LINE_AA) else: # 没有检测到人脸 cv2.putText(im_rd, "no face", (20, 50), font, 1, (0, 0, 255), 1, cv2.LINE_AA) # 添加说明 im_rd = cv2.putText(im_rd, "s: screenshot", (20, 400), font, 0.8, (255, 255, 255), 1, cv2.LINE_AA) im_rd = cv2.putText(im_rd, "q: quit", (20, 450), font, 0.8, (255, 255, 255), 1, cv2.LINE_AA) # 按下s键保存 if (k == ord('s')): cnt+=1 cv2.imwrite("screenshoot"+str(cnt)+".jpg", im_rd) # 按下q键退出 if(k==ord('q')): break # 窗口显示 cv2.imshow("camera", im_rd)# 释放摄像头cap.release()# 删除建立的窗口cv2.destroyAllWindows()如果对您有帮助,欢迎在GitHub上star本项目。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
0.引言利用python开发,借助Dlib库捕获摄像头中的人脸,提取人脸特征,通过计算欧氏距离来和预存的人脸特征进行对比,达到人脸识别的目的;可以自动从摄像头中
python与C++dlib人脸检测结果对比,供大家参考,具体内容如下说明:由于项目需求发现Linux下c++使用dlib进行人脸检测和python使用dlib
tof3d立体摄像头能够实现3D人脸识别功能。 tof3d立体摄像头是利用ToF测量原理来确定摄像头与物体或周围环境之间距离,并通过测量的点生成深度图像或3D
利用Python+opencv实现从摄像头捕获图像,识别其中的人眼/人脸,并打上马赛克。系统环境:Windows7+Python3.6.3+opencv3.4.
项目中需要实现人脸登陆功能,实现思路为在前端检测人脸,把人脸照片发送到后端识别,返回用户token登陆成功前端调用摄像头使用tracking.js检测视频流中的