时间:2021-05-22
python 与 C++ dlib人脸检测结果对比,供大家参考,具体内容如下
说明:
由于项目需求发现Linux下c++使用dlib进行人脸检测和python使用dlib检测,得到的结果出入比较大,于是写了测试用例,发现影响结果的原因有但不限于:
1.dlib版本不同(影响不大,几个像素的差别)
2.dlib 人脸检测中detector()第二个参数的设置测试结果如下:
python
PDlib.py:
# -*- coding: utf-8 -*-import sysimport cv2 import dlibfrom skimage import iodetector = dlib.get_frontal_face_detector()win = dlib.image_window()for f in sys.argv[1:]: img = io.imread(f) dets = detector(img,1) #使用detector进行人脸检测 for i, d in enumerate(dets): x = d.left() y = d.top() w = d.right() h = d.bottom() cv2.rectangle(img, (x, y), (w, h), (0, 255, 0)) print("({},{},{},{})".format( x, y, (w-x), (h-y))) win.set_image(img) io.imsave('./P_Dlib_test.jpg',img) #等待点击 dlib.hit_enter_to_continue()C++
CDlib.cpp:
#include <dlib/image_processing/frontal_face_detector.h>#include <dlib/opencv.h>#include "opencv2/opencv.hpp"#include <iostream>using namespace dlib;using namespace std;cv::Rect Detect(cv::Mat im){ cv::Rect R; frontal_face_detector detector = get_frontal_face_detector(); array2d<bgr_pixel> img; assign_image(img, cv_image<uchar>(im)); std::vector<rectangle> dets = detector(img);//检测人脸 //查找最大脸 if (dets.size() != 0) { int Max = 0; int area = 0; for (unsigned long t = 0; t < dets.size(); ++t) { if (area < dets[t].width()*dets[t].height()) { area = dets[t].width()*dets[t].height(); Max = t; } } R.x = dets[Max].left(); R.y = dets[Max].top(); R.width = dets[Max].width(); R.height = dets[Max].height(); cout<<"("<<R.x<<","<<R.y<<","<<R.width<<","<<R.height<<")"<<endl; } return R;}int main(int argc, char** argv){ if (argc != 2) { fprintf(stderr, "请输入正确参数\n"); return 1; } string path = argv[1]; try { cv::Mat src, dec; src = cv::imread(path); src.copyTo(dec); cv::cvtColor(dec, dec, CV_BGR2GRAY); cv::Rect box; box = Detect(dec); cv::rectangle(src, box, cv::Scalar(0, 0, 255), 1, 1, 0); cv::imshow("frame", src); cv::imwrite("./C_Dlib_test.jpg", src); cv::waitKey(0);//等待建入 } catch (exception& e) { cout << e.what() << endl; }}项目编译及运行
python
运行脚本 python PDlib.py G:\DlibTest\data\bush.jpg
C++
Demo:点击下载
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
Python3利用Dlib19.7实现摄像头人脸检测特征点标定0.引言利用python开发,借助Dlib库捕获摄像头中的人脸,进行实时特征点标定;图1工程效果示
python网络编程详解网络编程的专利权应该属于Unix,各个平台(如windows、Linux等)、各门语言(C、C++、Python、Java等)所实现的符
0.引言利用python开发,借助Dlib库捕获摄像头中的人脸,提取人脸特征,通过计算欧氏距离来和预存的人脸特征进行对比,达到人脸识别的目的;可以自动从摄像头中
使用Python实现了一下我们同事的C++高斯投影正反算,实际跑通,可用。#!/usr/bin/python#-*-coding:utf-8-*-importm
最近项目使用c++操作Python脚本,选用boost.python库。在window下编译安装很顺利,但是在Linux下一直编译不通过,总是提示找不到头文件。