时间:2021-05-22
系统默认是torch.FloatTensor类型
data = torch.Tensor(2,3)是一个2*3的张量,类型为FloatTensor
data.cuda()就转换为GPU的张量类型,torch.cuda.FloatTensor类型
(1) CPU或GPU之间的张量转换
在Tensor后加long(), int(), double(),float(),byte()等函数就能将Tensor进行类型转换type()函数,
data为Tensor数据类型,data.type()为给出data的类型,
如果使用data.type(torch.FloatTensor)则强制转换为torch.FloatTensor类型张量
(2) CPU张量转化成GPU张量
data.cuda()
(3) GPU张量转化成CPU张量
data.cpu()
(4) Variable变量转换成普通的Tensor
Variable是一个Wrapper,装在里面的data是tensor,如果Var是Variable变量,使用Var.data获得Tensor变量
(5) Tensor与numpy array之间的转换
Tensor->numpy 使用data.numpy(),data为Tensor变量
Numpy->Tensor 使用torch.from_numpy(data),data为numpy变量
(6) 分别获取张量和数组的尺寸,注意size的使用
torch 张量
获取张量的尺寸 a.size()
numpy 数组
获取数组的尺寸 b.shape
获取数组中元素的个数: b.size (这里和张量中的属性的size的含义不同)
(7) 升维和降维的问题
unsqueeze(N)升维到第N维
squeeze(N)降维第N维
需要做如下操作:
x = x.unsqueeze(0) 假如x=(3,1080,1920) 操作后 x = (1,3,1080,1920)
降维也是做同样的操作
以上这篇pytorch实现Tensor变量之间的转换就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
在使用pytorch的时候,经常会涉及到两种数据格式tensor和ndarray之间的转换,这里总结一下两种格式的转换:1.tensorcpu和tensorgp
传统使用opencv自带的swapaxes进行转换,然后使用pytorch的from_numpy转为tensor例如:img=img.swapaxes(1,2)
numpy中的ndarray转化成pytorch中的tensor:torch.from_numpy()pytorch中的tensor转化成numpy中的ndar
PyTorch基础入门一:PyTorch基本数据类型1)Tensor(张量)Pytorch里面处理的最基本的操作对象就是Tensor(张量),它表示的其实就是一
在使用pytorch作为深度学习的框架时,经常会遇到变量variable、张量tensor与矩阵numpy的类型的相互转化的问题,本章结合这实际图像对此转化方法