keras 解决加载lstm+crf模型出错的问题

时间:2021-05-22

错误展示

new_model = load_model(“model.h5”)

报错:

1、keras load_model valueError: Unknown Layer :CRF

2、keras load_model valueError: Unknown loss function:crf_loss

错误修改

1、load_model修改源码:custom_objects = None 改为 def load_model(filepath, custom_objects, compile=True):

2、new_model = load_model(“model.h5”,custom_objects={‘CRF': CRF,‘crf_loss': crf_loss,‘crf_viterbi_accuracy': crf_viterbi_accuracy}

以上修改后,即可运行。

补充知识:用keras搭建bilstm crf

使用 https://github.com/keras-team/keras-contrib实现的crf layer,

安装 keras-contrib

pip install git+https://pile('rmsprop', loss=crf_layer.loss_function, metrics=[crf_layer.accuracy]) return modeldef save_embedding_bilstm2_crf_model(model, filename): save_load_utils.save_all_weights(model,filename)def load_embedding_bilstm2_crf_model(filename): model = build_embedding_bilstm2_crf_model() save_load_utils.load_all_weights(model, filename) return modelif __name__ == '__main__': model = build_embedding_bilstm2_crf_model()

注意:

如果执行build模型报错,则很可能是keras版本的问题。在keras-contrib==2.0.8且keras==2.0.8时,上面代码不会报错。

以上这篇keras 解决加载lstm+crf模型出错的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章