时间:2021-05-23
1、流程
大体流程如下,无论图像、声音、ADC数据都是如下流程:
(1)将原信号进行FFT;
(2)将进行FFT得到的数据去掉需要滤波的频率;
(3)进行FFT逆变换得到信号数据;
2、算法仿真
2.1 生成数据:
#采样点选择1400个,因为设置的信号频率分量最高为600Hz,根据采样定理知采样频率要大于信号频率2倍,所以这里设置采样频率为1400Hz(即一秒内有1400个采样点)x=np.linspace(0,1,1400)#设置需要采样的信号,频率分量有180,390和600y=2*np.sin(2*np.pi*180*x) + 3*np.sin(2*np.pi*390*x)+4*np.sin(2*np.pi*600*x)2.2 对生成的数据进行FFT变换
yy=fft(y) #快速傅里叶变换yf=abs(fft(y)) # 取模yf1=abs(fft(y))/((len(x)/2)) #归一化处理yf2 = yf1[range(int(len(x)/2))] #由于对称性,只取一半区间2.3显示转换结果:
显示原始FFT模值:
#混合波的FFT(双边频率范围)plt.figure(2)plt.plot(xf,yf,'r') #显示原始信号的FFT模值plt.title('FFT of Mixed wave(two sides frequency range)',fontsize=7,color='#7A378B') #注意这里的颜色可以查询颜色代码表显示原始FFT归一化后的模值:
#混合波的FFT(归一化)plt.figure(3)plt.plot(xf1,yf1,'g')plt.title('FFT of Mixed wave(normalization)',fontsize=9,color='r')由于对称,只取一半区间进行显示
plt.figure(4)plt.plot(xf2,yf2,'b')plt.title('FFT of Mixed wave)',fontsize=10,color='#F08080')3、利用FFT进行滤波
例如将频率为600HZ的噪声滤掉,这里直接将该频段的数据置零:
yy=fft(y) #快速傅里叶变换yreal = yy.real # 获取实数部分yimag = yy.imag # 获取虚数部分test_y =yyfor i in range(len(yy)): if i <=900 and i>=500: test_y[i]=0对置零后的数据进行逆变换:
test = np.fft.ifft(test_y) #对变换后的结果应用ifft函数,应该可以近似地还原初始信号。对还原的数据进行FFT变换的结果:
滤波后的数据和原数据相对比:
蓝色的为原数据,橙色的为滤波后的数据
假设将400Hz和600Hz的信号都滤掉得到的信号图像如下:
4、对随机噪声进行滤波
源码:
noise_size = 1400noise_array = np.random.normal(0, 2, noise_size) adc_value=[] for i in range(noise_size): adc_value.append(0) y= np.array(adc_value) + noise_arrayyy=fft(y) #快速傅里叶变换yf=abs(fft(y)) # 取模yf1=abs(fft(y))/((len(y)/2)) #归一化处理yf2 = yf1[range(int(len(y)/2))] #由于对称性,只取一半区间#混合波的FFT(双边频率范围)xf = np.arange(len(y)) plt.figure(1)plt.plot(xf,yf,'r') #显示原始信号的FFT模值plt.title('FFT of Mixed wave(two sides frequency range)',fontsize=7,color='#7A378B') #注意这里的颜色可以查询颜色代码表yy=fft(y) #快速傅里叶变换yreal = yy.real # 获取实数部分yimag = yy.imag # 获取虚数部分test_y =yyfor i in range(len(yy)): if i <=1200 and i>=200: test_y[i]=0test = np.fft.ifft(test_y) #对变换后的结果应用ifft函数,应该可以近似地还原初始信号。y=testyy=fft(y) #快速傅里叶变换yf=abs(fft(y)) # 取模yf1=abs(fft(y))/((len(y)/2)) #归一化处理yf2 = yf1[range(int(len(y)/2))] #由于对称性,只取一半区间#混合波的FFT(双边频率范围)xf = np.arange(len(y)) plt.figure(2)plt.plot(xf,yf,'r') #显示原始信号的FFT模值plt.title('FFT of Mixed wave(two sides frequency range)',fontsize=7,color='#7A378B') #注意这里的颜色可以查询颜色代码表运行结果:
原数据频谱图:
滤波后的频谱图:
滤波后(蓝色线)与原数据(红色线)对比:
以上这篇Python利用FFT进行简单滤波的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
FFT是DFT的高效算法,能够将时域信号转化到频域上,下面记录下一段用python实现的FFT代码。#encoding=utf-8importnumpyasnp
主要讲解Python调用OpenCV实现图像平滑,包括四个算法:均值滤波、方框滤波、高斯滤波和中值滤波.给图像增加噪声:importcv2importnumpy
基于OpenCV2.4.8和python2.7实现简单的手势识别。以下为基本步骤1.去除背景,提取手的轮廓2.RGB->YUV,同时计算直方图3.进行形态学滤波
本文实例为大家分享了python+opencv实现霍夫变换检测直线的具体代码,供大家参考,具体内容如下python+opencv实现高斯平滑滤波python+o
图像滤波在opencv中可以有多种实现形式自定义滤波如使用3×3的掩模:对图像进行处理.使用函数filter2D()实现#includeusingnamespa