时间:2021-05-23
1. 数据准备
在文件夹下分别建立训练目录train,验证目录validation,测试目录test,每个目录下建立dogs和cats两个目录,在dogs和cats目录下分别放入拍摄的狗和猫的图片,图片的大小可以不一样。
2. 数据读取
# 存储数据集的目录base_dir = 'E:/python learn/dog_and_cat/data/' # 训练、验证数据集的目录train_dir = os.path.join(base_dir, 'train')validation_dir = os.path.join(base_dir, 'validation')test_dir = os.path.join(base_dir, 'test') # 猫训练图片所在目录train_cats_dir = os.path.join(train_dir, 'cats') # 狗训练图片所在目录train_dogs_dir = os.path.join(train_dir, 'dogs') # 猫验证图片所在目录validation_cats_dir = os.path.join(validation_dir, 'cats') # 狗验证数据集所在目录validation_dogs_dir = os.path.join(validation_dir, 'dogs') print('total training cat images:', len(os.listdir(train_cats_dir))) print('total training dog images:', len(os.listdir(train_dogs_dir))) print('total validation cat images:', len(os.listdir(validation_cats_dir))) print('total validation dog images:', len(os.listdir(validation_dogs_dir)))3. 模型建立
# 搭建模型model = Sequential()model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)))model.add(MaxPooling2D((2, 2)))model.add(Conv2D(64, (3, 3), activation='relu'))model.add(MaxPooling2D((2, 2)))model.add(Conv2D(128, (3, 3), activation='relu'))model.add(MaxPooling2D((2, 2)))model.add(Conv2D(128, (3, 3), activation='relu'))model.add(MaxPooling2D((2, 2)))model.add(Flatten())model.add(Dense(512, activation='relu'))model.add(Dense(1, activation='sigmoid')) print(model.summary()) model.compile(loss='binary_crossentropy', optimizer=RMSprop(lr=1e-4), metrics=['acc'])4. 模型训练
train_datagen = ImageDataGenerator(rescale=1./255)test_datagen = ImageDataGenerator(rescale=1./255) train_generator = train_datagen.flow_from_directory( train_dir, # target directory target_size=(150, 150), # resize图片 batch_size=20, class_mode='binary') validation_generator = test_datagen.flow_from_directory( validation_dir, target_size=(150, 150), batch_size=20, class_mode='binary') for data_batch, labels_batch in train_generator: print('data batch shape:', data_batch.shape) print('labels batch shape:', labels_batch.shape) break hist = model.fit_generator( train_generator, steps_per_epoch=100, epochs=10, validation_data=validation_generator, validation_steps=50) model.save('cats_and_dogs_small_1.h5')5. 模型评估
acc = hist.history['acc']val_acc = hist.history['val_acc']loss = hist.history['loss']val_loss = hist.history['val_loss'] epochs = range(len(acc)) plt.plot(epochs, acc, 'bo', label='Training acc')plt.plot(epochs, val_acc, 'b', label='Validation acc')plt.title('Training and validation accuracy') plt.legend()plt.figure() plt.figure()plt.plot(epochs, loss, 'bo', label='Training loss')plt.plot(epochs, val_loss, 'b', label='Validation loss')plt.legend()plt.show()6. 预测
imagename = 'E:/python learn/dog_and_cat/data/validation/dogs/dog.2026.jpg'test_image = image.load_img(imagename, target_size = (150, 150))test_image = image.img_to_array(test_image)test_image = np.expand_dims(test_image, axis=0)result = model.predict(test_image) if result[0][0] == 1: prediction ='dog'else: prediction ='cat' print(prediction)代码在spyder下运行正常,一般情况下,可以将文件分为两个部分,一部分为Train.py,包含深度学习模型建立、训练和模型的存储,另一部分Predict.py,包含模型的读取,评价和预测
补充知识:keras 猫狗大战自搭网络以及vgg16应用
导入模块
import osimport numpy as npimport tensorflow as tfimport randomimport seaborn as snsimport matplotlib.pyplot as pltimport kerasfrom keras.models import Sequential, Modelfrom keras.layers import Dense, Dropout, Activation, Flatten, Input,BatchNormalizationfrom keras.layers.convolutional import Conv2D, MaxPooling2Dfrom keras.optimizers import RMSprop, Adam, SGDfrom keras.preprocessing import imagefrom keras.preprocessing.image import ImageDataGeneratorfrom keras.applications.vgg16 import VGG16, preprocess_input from sklearn.model_selection import train_test_split加载数据集
def read_and_process_image(data_dir,width=64, height=64, channels=3, preprocess=False): train_images= [data_dir + i for i in os.listdir(data_dir)] random.shuffle(train_images) def read_image(file_path, preprocess): img = image.load_img(file_path, target_size=(height, width)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) # if preprocess: # x = preprocess_input(x) return x def prep_data(images, proprocess): count = len(images) data = np.ndarray((count, height, width, channels), dtype = np.float32) for i, image_file in enumerate(images): image = read_image(image_file, preprocess) data[i] = image return data def read_labels(file_path): labels = [] for i in file_path: label = 1 if 'dog' in i else 0 labels.append(label) return labels X = prep_data(train_images, preprocess) labels = read_labels(train_images) assert X.shape[0] == len(labels) print("Train shape: {}".format(X.shape)) return X, labels读取数据集
# 读取图片WIDTH = 150HEIGHT = 150CHANNELS = 3X, y = read_and_process_image('D:\\Python_Project\\train\\',width=WIDTH, height=HEIGHT, channels=CHANNELS)查看数据集信息
# 统计ysns.countplot(y) # 显示图片def show_cats_and_dogs(X, idx): plt.figure(figsize=(10,5), frameon=True) img = X[idx,:,:,::-1] img = img/255 plt.imshow(img) plt.show() for idx in range(0,3): show_cats_and_dogs(X, idx) train_X = X[0:17500,:,:,:]train_y = y[0:17500]test_X = X[17500:25000,:,:,:]test_y = y[17500:25000]train_X.shapetest_X.shape自定义神经网络层数
input_layer = Input((WIDTH, HEIGHT, CHANNELS))# 第一层z = input_layerz = Conv2D(64, (3,3))(z)z = BatchNormalization()(z)z = Activation('relu')(z)z = MaxPooling2D(pool_size = (2,2))(z) z = Conv2D(64, (3,3))(z)z = BatchNormalization()(z)z = Activation('relu')(z)z = MaxPooling2D(pool_size = (2,2))(z) z = Conv2D(128, (3,3))(z)z = BatchNormalization()(z)z = Activation('relu')(z)z = MaxPooling2D(pool_size = (2,2))(z) z = Conv2D(128, (3,3))(z)z = BatchNormalization()(z)z = Activation('relu')(z)z = MaxPooling2D(pool_size = (2,2))(z) z = Flatten()(z)z = Dense(64)(z)z = BatchNormalization()(z)z = Activation('relu')(z)z = Dropout(0.5)(z)z = Dense(1)(z)z = Activation('sigmoid')(z) model = Model(input_layer, z) model.compile( optimizer = keras.optimizers.RMSprop(), loss = keras.losses.binary_crossentropy, metrics = [keras.metrics.binary_accuracy]) model.summary()训练模型
history = model.fit(train_X,train_y, validation_data=(test_X, test_y),epochs=10,batch_size=128,verbose=True)score = model.evaluate(test_X, test_y, verbose=0)print("Large CNN Error: %.2f%%" %(100-score[1]*100))复用vgg16模型
def vgg16_model(input_shape= (HEIGHT,WIDTH,CHANNELS)): vgg16 = VGG16(include_top=False, weights='imagenet',input_shape=input_shape) for layer in vgg16.layers: layer.trainable = False last = vgg16.output # 后面加入自己的模型 x = Flatten()(last) x = Dense(256, activation='relu')(x) x = Dropout(0.5)(x) x = Dense(256, activation='relu')(x) x = Dropout(0.5)(x) x = Dense(1, activation='sigmoid')(x) model = Model(inputs=vgg16.input, outputs=x) return model编译模型
model_vgg16 = vgg16_model()model_vgg16.summary()model_vgg16.compile(loss='binary_crossentropy',optimizer = Adam(0.0001), metrics = ['accuracy'])训练模型
# 训练模型history = model_vgg16.fit(train_X,train_y, validation_data=(test_X, test_y),epochs=5,batch_size=128,verbose=True)score = model_vgg16.evaluate(test_X, test_y, verbose=0)print("Large CNN Error: %.2f%%" %(100-score[1]*100))以上这篇keras分类之二分类实例(Cat and dog)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。
本文实例为大家分享了Python感知器算法实现的具体代码,供大家参考,具体内容如下先创建感知器类:用于二分类#-*-coding:utf-8-*-importn
逻辑回归适用类型:解决二分类问题逻辑回归的出现:线性回归可以预测连续值,但是不能解决分类问题,我们需要根据预测的结果判定其属于正类还是负类。所以逻辑回归就是将线
最近在看吴恩达的机器学习课程,自己用python实现了其中的logistic算法,并用梯度下降获取最优值。logistic分类是一个二分类问题,而我们的线性回归
1.page.wx.css内容如下:分类1分类1分类1分类1分类1分类1分类1分类1分类1分类1分类12,想要制作成的效果为:3,page.wxss.class
Softmax原理Softmax函数用于将分类结果归一化,形成一个概率分布。作用类似于二分类中的Sigmoid函数。对于一个k维向量z,我们想把这个结果转换为一