Python3利用Dlib实现摄像头实时人脸检测和平铺显示示例

时间:2021-05-23

1. 引言

在某些场景下,我们不仅需要进行实时人脸检测追踪,还要进行再加工;这里进行摄像头实时人脸检测,并对于实时检测的人脸进行初步提取;

单个/多个人脸检测,并依次在摄像头窗口,实时平铺显示检测到的人脸;

图 1 动态实时检测效果图

检测到的人脸矩形图像,会依次平铺显示在摄像头的左上方;

当多个人脸时候,也能够依次铺开显示;

左上角窗口的大小会根据捕获到的人脸大小实时变化;

图 2 单个/多个人脸情况下摄像头识别显示结果

2. 代码实现

主要分为三个部分:

摄像头调用,利用 OpenCv 里面的cv2.VideoCapture();

人脸检测,这里利用开源的 Dlib 框架,Dlib 中人脸检测具体可以参考Python 3 利用 Dlib 19.7 进行人脸检测;

图像填充,剪切部分可以参考Python 3 利用 Dlib 实现人脸检测和剪切;

2.1 摄像头调用

Python 中利用 OpenCv 调用摄像头的一个例子how_to_use_camera.py:

# OpenCv 调用摄像头# 默认调用笔记本摄像头# Author: coneypo# Blog: http:///coneypo/Dlib_face_cutimport dlibimport cv2import time# 储存截图的目录path_screenshots = "data/images/screenshots/"detector = dlib.get_frontal_face_detector()predictor = dlib.shape_predictor('data/dlib/shape_predictor_68_face_landmarks.dat')# 创建 cv2 摄像头对象cap = cv2.VideoCapture(0)# 设置视频参数,propId 设置的视频参数,value 设置的参数值cap.set(3, 960)# 截图 screenshots 的计数器ss_cnt = 0while cap.isOpened(): flag, img_rd = cap.read() # 每帧数据延时 1ms,延时为 0 读取的是静态帧 k = cv2.waitKey(1) # 取灰度 img_gray = cv2.cvtColor(img_rd, cv2.COLOR_RGB2GRAY) # 人脸数 faces = detector(img_gray, 0) # 待会要写的字体 font = cv2.FONT_HERSHEY_SIMPLEX # 按下 'q' 键退出 if k == ord('q'): break else: # 检测到人脸 if len(faces) != 0: # 记录每次开始写入人脸像素的宽度位置 faces_start_width = 0 for face in faces: # 绘制矩形框 cv2.rectangle(img_rd, tuple([face.left(), face.top()]), tuple([face.right(), face.bottom()]), (0, 255, 255), 2) height = face.bottom() - face.top() width = face.right() - face.left() ### 进行人脸裁减 ### # 如果没有超出摄像头边界 if (face.bottom() < 480) and (face.right() < 640) and \ ((face.top() + height) < 480) and ((face.left() + width) < 640): # 填充 for i in range(height): for j in range(width): img_rd[i][faces_start_width + j] = \ img_rd[face.top() + i][face.left() + j] # 更新 faces_start_width 的坐标 faces_start_width += width cv2.putText(img_rd, "Faces in all: " + str(len(faces)), (20, 350), font, 0.8, (0, 0, 0), 1, cv2.LINE_AA) else: # 没有检测到人脸 cv2.putText(img_rd, "no face", (20, 350), font, 0.8, (0, 0, 0), 1, cv2.LINE_AA) # 添加说明 img_rd = cv2.putText(img_rd, "Press 'S': Screen shot", (20, 400), font, 0.8, (255, 255, 255), 1, cv2.LINE_AA) img_rd = cv2.putText(img_rd, "Press 'Q': Quit", (20, 450), font, 0.8, (255, 255, 255), 1, cv2.LINE_AA) # 按下 's' 键保存 if k == ord('s'): ss_cnt += 1 print(path_screenshots + "screenshot" + "_" + str(ss_cnt) + "_" + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + ".jpg") cv2.imwrite(path_screenshots + "screenshot" + "_" + str(ss_cnt) + "_" + time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) + ".jpg", img_rd) cv2.namedWindow("camera", 1) cv2.imshow("camera", img_rd)# 释放摄像头cap.release()# 删除建立的窗口cv2.destroyAllWindows()

这个代码就是把之前做的人脸检测,图像拼接几个结合起来,代码量也很少,只有100行,如有问题可以参考之前博客:

Python 3 利用 Dlib 进行人脸检测

Python 3 利用 Dlib 实现人脸检测和剪切

人脸检测对于机器性能占用不高,但是如果要进行实时的图像裁剪拼接,计算量可能比较大,所以可能会出现卡顿;

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

声明:本页内容来源网络,仅供用户参考;我单位不保证亦不表示资料全面及准确无误,也不保证亦不表示这些资料为最新信息,如因任何原因,本网内容或者用户因倚赖本网内容造成任何损失或损害,我单位将不会负任何法律责任。如涉及版权问题,请提交至online#300.cn邮箱联系删除。

相关文章